Improve model card: Add pipeline tag, description, GitHub link, and sample usage

#5
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +29 -1
README.md CHANGED
@@ -1,11 +1,39 @@
1
  ---
2
- license: mit
3
  datasets:
4
  - bayes-group-diffusion/GAS-teachers
 
5
  tags:
6
  - arxiv:2510.17699
 
7
  ---
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ## Citation
10
 
11
  ```bibtex
 
1
  ---
 
2
  datasets:
3
  - bayes-group-diffusion/GAS-teachers
4
+ license: mit
5
  tags:
6
  - arxiv:2510.17699
7
+ pipeline_tag: unconditional-image-generation
8
  ---
9
 
10
+ # GAS: Improving Discretization of Diffusion ODEs via Generalized Adversarial Solver
11
+
12
+ This repository contains the implementation for **GAS: Improving Discretization of Diffusion ODEs via Generalized Adversarial Solver**, a method presented in the paper [GAS: Improving Discretization of Diffusion ODEs via Generalized Adversarial Solver](https://arxiv.org/abs/2510.17699).
13
+
14
+ The work introduces a novel approach to accelerate sampling in diffusion models without compromising generation quality. The **Generalized Solver (GS)** offers a simpler parameterization of the ODE sampler, and when combined with adversarial training, forms the **Generalized Adversarial Solver (GAS)**, which enhances detail fidelity and mitigates artifacts. This method aims to reduce the computational cost of diffusion model sampling from dozens to just a few function evaluations.
15
+
16
+ ![Teaser image](https://github.com/3145tttt/GAS/raw/main/docs/teaser_1920.jpg)
17
+
18
+ For detailed code, setup instructions, and examples, please refer to the official GitHub repository: [https://github.com/3145tttt/GAS](https://github.com/3145tttt/GAS)
19
+
20
+ ## How to use
21
+
22
+ To generate images from a trained **GS** checkpoint, you can use the `generate.py` script. Set the `--checkpoint_path` option to the path of your trained model checkpoint.
23
+
24
+ ```bash
25
+ # Generate 50000 images using 2 GPUs and a checkpoint from checkpoint_path
26
+ torchrun --standalone --nproc_per_node=2 generate.py \
27
+ --config=configs/edm/cifar10.yaml \
28
+ --outdir=data/teachers/cifar10 \
29
+ --seeds=50000-99999 \
30
+ --batch=1024 \
31
+ --steps=4 \
32
+ --checkpoint_path=checkpoint_path
33
+ ```
34
+
35
+ For a fair comparison and to avoid leakage of test seeds into the training dataset, we recommend using seeds 50000-99999 for all datasets except MS-COCO, which should use seeds 30000-59999.
36
+
37
  ## Citation
38
 
39
  ```bibtex