antonjeran's picture
Upload 40 files
b53f252
raw
history blame
8.3 kB
import os
import errno
import numpy as np
from copy import deepcopy
from miscc.config import cfg
from scipy.io.wavfile import write
from torch.nn import init
import torch
import torch.nn as nn
import torchvision.utils as vutils
from wavefile import WaveWriter, Format
import RT60
from multiprocessing import Pool
#############################
def KL_loss(mu, logvar):
# -0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
KLD = torch.mean(KLD_element).mul_(-0.5)
return KLD
def compute_discriminator_loss(netD, real_RIRs, fake_RIRs,
real_labels, fake_labels,
conditions, gpus):
criterion = nn.BCELoss()
batch_size = real_RIRs.size(0)
cond = conditions.detach()
fake = fake_RIRs.detach()
real_features = nn.parallel.data_parallel(netD, (real_RIRs), gpus)
fake_features = nn.parallel.data_parallel(netD, (fake), gpus)
# real pairs
#print("util conditions ",cond.size())
inputs = (real_features, cond)
real_logits = nn.parallel.data_parallel(netD.get_cond_logits, inputs, gpus)
errD_real = criterion(real_logits, real_labels)
# wrong pairs
inputs = (real_features[:(batch_size-1)], cond[1:])
wrong_logits = \
nn.parallel.data_parallel(netD.get_cond_logits, inputs, gpus)
errD_wrong = criterion(wrong_logits, fake_labels[1:])
# fake pairs
inputs = (fake_features, cond)
fake_logits = nn.parallel.data_parallel(netD.get_cond_logits, inputs, gpus)
errD_fake = criterion(fake_logits, fake_labels)
if netD.get_uncond_logits is not None:
real_logits = \
nn.parallel.data_parallel(netD.get_uncond_logits,
(real_features), gpus)
fake_logits = \
nn.parallel.data_parallel(netD.get_uncond_logits,
(fake_features), gpus)
uncond_errD_real = criterion(real_logits, real_labels)
uncond_errD_fake = criterion(fake_logits, fake_labels)
#
errD = ((errD_real + uncond_errD_real) / 2. +
(errD_fake + errD_wrong + uncond_errD_fake) / 3.)
errD_real = (errD_real + uncond_errD_real) / 2.
errD_fake = (errD_fake + uncond_errD_fake) / 2.
else:
errD = errD_real + (errD_fake + errD_wrong) * 0.5
return errD, errD_real.data, errD_wrong.data, errD_fake.data
# return errD, errD_real.data[0], errD_wrong.data[0], errD_fake.data[0]
def compute_generator_loss(epoch,netD,real_RIRs, fake_RIRs, real_labels, conditions, gpus):
criterion = nn.BCELoss()
loss = nn.L1Loss() #nn.MSELoss()
loss1 = nn.MSELoss()
RT_error = 0
# print("num", real_RIRs.size(),real_RIRs.size()[0])
# input("kk")
cond = conditions.detach()
fake_features = nn.parallel.data_parallel(netD, (fake_RIRs), gpus)
# fake pairs
inputs = (fake_features, cond)
fake_logits = nn.parallel.data_parallel(netD.get_cond_logits, inputs, gpus)
MSE_error = loss(real_RIRs,fake_RIRs)
MSE_error1 = loss1(real_RIRs,fake_RIRs)
sample_size = real_RIRs.size()[0]
channel = 12
fs = 16000
rn = np.random.randint(sample_size-(channel*2))
real_wave = np.array(real_RIRs[rn:rn+channel].to("cpu").detach())
real_wave = real_wave.reshape(channel,4096)
fake_wave = np.array(fake_RIRs[rn:rn+channel].to("cpu").detach())
fake_wave = fake_wave.reshape(channel,4096)
pool = Pool(processes=12)
results =[]
for n in range(channel):
results.append(pool.apply_async(RT60.t60_parallel, args=(n,real_wave,fake_wave,fs,)))
T60_error =0
for result in results:
T60_error = T60_error + result.get()
RT_error = T60_error/channel
pool.close()
pool.join()
# T60_error =0
# for m in range(channel):
# real_wave_single = real_wave[:,(rn+m)]
# fake_wave_single = fake_wave[:,(rn+m)]
# Real_T60_val = RT60.t60_impulse(real_wave_single,fs)
# Fake_T60_val = RT60.t60_impulse(fake_wave_single,fs)
# T60_diff = abs(Real_T60_val-Fake_T60_val)
# T60_error = T60_error + T60_diff
# RT_error = T60_error/channel
# r = WaveWriter("real.wav", channels=portion, samplerate=fs)
# r.write(np.array(real_IR))
# f = WaveWriter("fake.wav", channels=portion, samplerate=fs)
# f.write(np.array(fake_IR))
# result = call_python_version("3.8", "RT60", "t60_error",
# ["real.wav","fake.wav"])
# # print("RT_error ",result)
# RT_error = float(result)
# print("RT_error ",RT_error)
# if(epoch<100):
# errD_fake = criterion(fake_logits, real_labels)# + 2* 4096 * MSE_error
# else:
# errD_fake = criterion(fake_logits, real_labels) + 2* 4096 * MSE_error
errD_fake = criterion(fake_logits, real_labels) + 5* 4096 * MSE_error1 + 40 * RT_error
if netD.get_uncond_logits is not None:
fake_logits = \
nn.parallel.data_parallel(netD.get_uncond_logits,
(fake_features), gpus)
uncond_errD_fake = criterion(fake_logits, real_labels)
errD_fake += uncond_errD_fake
return errD_fake, MSE_error,RT_error
#############################
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('Linear') != -1:
m.weight.data.normal_(0.0, 0.02)
if m.bias is not None:
m.bias.data.fill_(0.0)
#############################
def save_RIR_results(data_RIR, fake, epoch, RIR_dir):
num = cfg.VIS_COUNT
fake = fake[0:num]
# data_RIR is changed to [0,1]
if data_RIR is not None:
data_RIR = data_RIR[0:num]
for i in range(num):
# #print("came 1")
real_RIR_path = RIR_dir+"/real_sample"+str(i)+".wav"
fake_RIR_path = RIR_dir+"/fake_sample"+str(i)+"_epoch_"+str(epoch)+".wav"
fs =16000
real_IR = np.array(data_RIR[i].to("cpu").detach())
fake_IR = np.array(fake[i].to("cpu").detach())
# #print("fake_IR ", fake_IR.size)
# #print("real_IR ", real_IR.size)
# #print("max real_IR ", max(real_IR[0]))
# #print("min real_IR ", min(real_IR[0]))
r = WaveWriter(real_RIR_path, channels=1, samplerate=fs)
r.write(np.array(real_IR))
f = WaveWriter(fake_RIR_path, channels=1, samplerate=fs)
f.write(np.array(fake_IR))
# write(real_RIR_path,fs,real_IR)
# write(fake_RIR_path,fs,fake_IR)
# write(real_RIR_path,fs,real_IR)
# write(fake_RIR_path,fs,fake_IR)
# vutils.save_image(
# data_RIR, '%s/real_samples.png' % RIR_dir,
# normalize=True)
# # fake.data is still [-1, 1]
# vutils.save_image(
# fake.data, '%s/fake_samples_epoch_%03d.png' %
# (RIR_dir, epoch), normalize=True)
else:
for i in range(num):
# #print("came 2")
fake_RIR_path = RIR_dir+"/small_fake_sample"+str(i)+"_epoch_"+str(epoch)+".wav"
fs =16000
fake_IR = np.array(fake[i].to("cpu").detach())
f = WaveWriter(fake_RIR_path, channels=1, samplerate=fs)
f.write(np.array(fake_IR))
# write(fake_RIR_path,fs,fake[i].astype(np.float32))
# vutils.save_image(
# fake.data, '%s/lr_fake_samples_epoch_%03d.png' %
# (RIR_dir, epoch), normalize=True)
def save_model(netG, netD, epoch, model_dir):
torch.save(
netG.state_dict(),
'%s/netG_epoch_%d.pth' % (model_dir, epoch))
torch.save(
netD.state_dict(),
'%s/netD_epoch_last.pth' % (model_dir))
#print('Save G/D models')
def mkdir_p(path):
try:
os.makedirs(path)
except OSError as exc: # Python >2.5
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else:
raise