File size: 4,285 Bytes
b53f252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import math
from scipy.io import wavfile
from scipy import stats

from acoustics.utils import _is_1d
from acoustics.signal import bandpass
from acoustics.bands import (_check_band_type, octave_low, octave_high, third_low, third_high)

import soundfile as sf
from multiprocessing import Pool

def t60_impulse(raw_signal,fs):  # pylint: disable=too-many-locals
    """
    Reverberation time from a WAV impulse response.
    :param file_name: name of the WAV file containing the impulse response.
    :param bands: Octave or third bands as NumPy array.
    :param rt: Reverberation time estimator. It accepts `'t30'`, `'t20'`, `'t10'` and `'edt'`.
    :returns: Reverberation time :math:`T_{60}`
    """
    bands =np.array([62.5 ,125, 250, 500,1000, 2000])

    if np.max(raw_signal)==0 and np.min(raw_signal)==0:
        print('came 1')
        return .5
    
    # fs, raw_signal = wavfile.read(file_name)
    band_type = _check_band_type(bands)

    # if band_type == 'octave':
    low = octave_low(bands[0], bands[-1])
    high = octave_high(bands[0], bands[-1])
    # elif band_type == 'third':
    #     low = third_low(bands[0], bands[-1])
    #     high = third_high(bands[0], bands[-1])

    
    init = -0.0
    end = -60.0
    factor = 1.0
    bands =bands[3:5]
    low = low[3:5]
    high = high[3:5]

    t60 = np.zeros(bands.size)

    for band in range(bands.size):
        # Filtering signal
        filtered_signal = bandpass(raw_signal, low[band], high[band], fs, order=8)
        abs_signal = np.abs(filtered_signal) / np.max(np.abs(filtered_signal))

        # Schroeder integration
        sch = np.cumsum(abs_signal[::-1]**2)[::-1]
        sch_db = 10.0 * np.log10(sch / np.max(sch))
        if math.isnan(sch_db[1]):
            print('came 2')
            return .5
        # print("leng sch_db ",sch_db.size)
        # print("sch_db ",sch_db)
        # Linear regression
        sch_init = sch_db[np.abs(sch_db - init).argmin()]
        sch_end = sch_db[np.abs(sch_db - end).argmin()]
        init_sample = np.where(sch_db == sch_init)[0][0]
        end_sample = np.where(sch_db == sch_end)[0][0]
        x = np.arange(init_sample, end_sample + 1) / fs
        y = sch_db[init_sample:end_sample + 1]
        slope, intercept = stats.linregress(x, y)[0:2]

        # Reverberation time (T30, T20, T10 or EDT)
        db_regress_init = (init - intercept) / slope
        db_regress_end = (end - intercept) / slope
        t60[band] = factor * (db_regress_end - db_regress_init)
    mean_t60 =(t60[1]+t60[0])/2
    # print("meant60 is ", mean_t60)
    if math.isnan(mean_t60):
        print('came 3')
        return .5
    return mean_t60

def t60_error(filename1,filename2):
    real_wave,fs = sf.read(filename1)
    fake_wave,fs = sf.read(filename2)

    channel = int(real_wave.size/len(real_wave))
    pool = Pool(processes=8)
    
    results =[]
    for n in range(channel):
        results.append(pool.apply_async(t60_parallel, args=(n,real_wave,fake_wave,fs,)))
    
    T60_error =0
    for result in results:
        T60_error =  T60_error + result.get()

    T60_error = T60_error/channel
    
    pool.close()
    pool.join()


    # T60_error = Parallel(n_jobs=64)(delayed(t60_parallel)(n, real_wave,fake_wave,fs) for n in range(channel))#np.random.randint(0,1023,size=channel))#
    # T60_error = sum(results)/channel
   
    # for n in range(channel):
    #     real_wave_single   = real_wave[:,n]
    #     fake_wave_single   = fake_wave[:,n]
    #     Real_T60_val = t60_impulse(real_wave_single,fs)
    #     Fake_T60_val = t60_impulse(fake_wave_single,fs)
    #     T60_diff = abs(Real_T60_val-Fake_T60_val)
    #     T60_error = T60_error + T60_diff
    # T60_error = T60_error/channel
    return str(T60_error)

def t60_parallel(n,real_wave,fake_wave,fs):
    real_wave_single   = real_wave[n,:]
    fake_wave_single   = fake_wave[n,:]
    Real_T60_val = t60_impulse(real_wave_single,fs)
    Fake_T60_val = t60_impulse(fake_wave_single,fs)
    T60_diff = abs(Real_T60_val-Fake_T60_val)

    return T60_diff







if __name__ == '__main__':
    t60_impulse('/home/anton/Desktop/gamma101/data/evaluation_all/SF1/Hotel_SkalskyDvur_ConferenceRoom2-MicID01-SpkID01_20170906_S-09-RIR-IR_sweep_15s_45Hzto22kHz_FS16kHz.v00.wav')