DIALOGUE

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0320
  • Accuracy: 0.9902

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2742 0.31 15 1.0896 0.7353
0.9231 0.62 30 0.7436 0.8039
0.7035 0.94 45 0.4280 0.9706
0.4361 1.25 60 0.2308 1.0
0.3081 1.56 75 0.1590 0.9902
0.1794 1.88 90 0.1269 0.9706
0.0988 2.19 105 0.0605 0.9902
0.0606 2.5 120 0.0617 0.9902
0.0372 2.81 135 0.0474 0.9902
0.0209 3.12 150 0.0411 0.9902
0.0134 3.44 165 0.0326 0.9902
0.0099 3.75 180 0.0273 0.9902
0.0085 4.06 195 0.0348 0.9902
0.0065 4.38 210 0.0335 0.9902
0.0058 4.69 225 0.0318 0.9902
0.0047 5.0 240 0.0309 0.9902
0.0041 5.31 255 0.0289 0.9902
0.0041 5.62 270 0.0284 0.9902
0.0038 5.94 285 0.0275 0.9902
0.0036 6.25 300 0.0270 0.9902
0.003 6.56 315 0.0260 0.9902
0.0027 6.88 330 0.0270 0.9902
0.0026 7.19 345 0.0291 0.9902
0.0024 7.5 360 0.0298 0.9902
0.0023 7.81 375 0.0283 0.9902
0.0024 8.12 390 0.0255 0.9902
0.0021 8.44 405 0.0251 0.9902
0.0019 8.75 420 0.0260 0.9902
0.0019 9.06 435 0.0264 0.9902
0.0017 9.38 450 0.0266 0.9902
0.0017 9.69 465 0.0276 0.9902
0.0017 10.0 480 0.0271 0.9902
0.0015 10.31 495 0.0271 0.9902
0.0015 10.62 510 0.0271 0.9902
0.0015 10.94 525 0.0266 0.9902
0.0014 11.25 540 0.0261 0.9902
0.0013 11.56 555 0.0260 0.9902
0.0013 11.88 570 0.0264 0.9902
0.0013 12.19 585 0.0268 0.9902
0.0013 12.5 600 0.0270 0.9902
0.0012 12.81 615 0.0274 0.9902
0.0012 13.12 630 0.0274 0.9902
0.0012 13.44 645 0.0278 0.9902
0.0011 13.75 660 0.0278 0.9902
0.001 14.06 675 0.0278 0.9902
0.001 14.38 690 0.0283 0.9902
0.001 14.69 705 0.0290 0.9902
0.001 15.0 720 0.0286 0.9902
0.001 15.31 735 0.0284 0.9902
0.001 15.62 750 0.0285 0.9902
0.0009 15.94 765 0.0289 0.9902
0.0009 16.25 780 0.0298 0.9902
0.0009 16.56 795 0.0305 0.9902
0.0009 16.88 810 0.0309 0.9902
0.0009 17.19 825 0.0304 0.9902
0.0008 17.5 840 0.0303 0.9902
0.0008 17.81 855 0.0302 0.9902
0.0009 18.12 870 0.0301 0.9902
0.0008 18.44 885 0.0300 0.9902
0.0008 18.75 900 0.0302 0.9902
0.0008 19.06 915 0.0300 0.9902
0.0007 19.38 930 0.0301 0.9902
0.0007 19.69 945 0.0299 0.9902
0.0008 20.0 960 0.0304 0.9902
0.0007 20.31 975 0.0302 0.9902
0.0007 20.62 990 0.0304 0.9902
0.0007 20.94 1005 0.0305 0.9902
0.0007 21.25 1020 0.0312 0.9902
0.0007 21.56 1035 0.0311 0.9902
0.0007 21.88 1050 0.0310 0.9902
0.0007 22.19 1065 0.0310 0.9902
0.0007 22.5 1080 0.0309 0.9902
0.0006 22.81 1095 0.0311 0.9902
0.0006 23.12 1110 0.0313 0.9902
0.0007 23.44 1125 0.0313 0.9902
0.0007 23.75 1140 0.0313 0.9902
0.0006 24.06 1155 0.0312 0.9902
0.0006 24.38 1170 0.0313 0.9902
0.0007 24.69 1185 0.0314 0.9902
0.0006 25.0 1200 0.0313 0.9902
0.0006 25.31 1215 0.0314 0.9902
0.0006 25.62 1230 0.0315 0.9902
0.0006 25.94 1245 0.0316 0.9902
0.0006 26.25 1260 0.0316 0.9902
0.0006 26.56 1275 0.0316 0.9902
0.0006 26.88 1290 0.0316 0.9902
0.0006 27.19 1305 0.0315 0.9902
0.0006 27.5 1320 0.0319 0.9902
0.0006 27.81 1335 0.0320 0.9902
0.0006 28.12 1350 0.0320 0.9902
0.0006 28.44 1365 0.0320 0.9902
0.0006 28.75 1380 0.0320 0.9902
0.0006 29.06 1395 0.0320 0.9902
0.0006 29.38 1410 0.0320 0.9902
0.0006 29.69 1425 0.0320 0.9902
0.0006 30.0 1440 0.0320 0.9902

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
3
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for SharonTudi/DIALOGUE

Finetuned
(6360)
this model