SciLake πͺπΊπ¬
Collection
Models and datasets developed within the SciLake project to support large-scale scientific knowledge graphs, metadata enrichment,...
β’
14 items
β’
Updated
GLiNER-large model finetuned on a selection of relevant entities in the domain of neuroscience, from the openMINDS controlled terms:
UBERONParcellationspeciespreparationTypetechniquebiologicalSexfrom gliner import GLiNER
LABELS = ['UBERONParcellation', 'species', 'preparationType', 'technique', 'biologicalSex']
THRESHOLD = xxx # choose your threshold
model = GLiNER.from_pretrained('SIRIS-Lab/SciLake-Neuroscience-GLiNER-large')
entities = model.predict_entities(to_tag, labels=LABELS, threshold=THRESHOLD)
Base model
gliner-community/gliner_large-v2.5