File size: 13,691 Bytes
e18c603 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
#!/usr/bin/env python3
"""
Multi-Head QA Metrics Inference Script
=====================================
This script loads a trained multi-head QA classification model and provides
inference capabilities for evaluating call center transcripts against various
QA metrics including opening, listening, proactiveness, resolution, hold, and closing.
Usage:
python inference.py --model_path "path/to/model" --text "transcript text"
Or use the interactive mode:
python inference.py --model_path "path/to/model" --interactive
"""
import os
import torch
import torch.nn as nn
import numpy as np
import argparse
import json
from typing import Dict, List, Optional
from transformers import DistilBertTokenizer, DistilBertModel, AutoConfig, DistilBertPreTrainedModel
from transformers.modeling_outputs import SequenceClassifierOutput
# QA Heads Configuration - must match training configuration
QA_HEADS_CONFIG = {
"opening": 1,
"listening": 5,
"proactiveness": 3,
"resolution": 5,
"hold": 2,
"closing": 1
}
# Submetric labels for better output interpretation
HEAD_SUBMETRIC_LABELS = {
"opening": [
"Use of call opening phrase"
],
"listening": [
"Caller was not interrupted",
"Empathizes with the caller",
"Paraphrases or rephrases the issue",
"Uses 'please' and 'thank you'",
"Does not hesitate or sound unsure"
],
"proactiveness": [
"Willing to solve extra issues",
"Confirms satisfaction with action points",
"Follows up on case updates"
],
"resolution": [
"Gives accurate information",
"Correct language use",
"Consults if unsure",
"Follows correct steps",
"Explains solution process clearly"
],
"hold": [
"Explains before placing on hold",
# "Provides status update after hold",
"Thanks caller for holding"
],
"closing": [
"Proper call closing phrase used"
]
}
class MultiHeadQAClassifier(DistilBertPreTrainedModel):
"""
Multi-head QA classifier model for call center transcript evaluation.
Each head corresponds to a different QA metric.
"""
def __init__(self, config):
super().__init__(config)
# Get heads config from model config
self.heads_config = getattr(config, 'heads_config', {
"opening": 1,
"listening": 5,
"proactiveness": 3,
"resolution": 5,
"hold": 2,
"closing": 1
})
self.bert = DistilBertModel(config)
classifier_dropout = getattr(config, 'classifier_dropout', 0.2)
self.dropout = nn.Dropout(classifier_dropout)
# Multiple heads, one per QA metric
self.heads = nn.ModuleDict({
head: nn.Linear(config.hidden_size, output_dim)
for head, output_dim in self.heads_config.items()
})
# Initialize weights
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[Dict[str, torch.Tensor]] = None,
**kwargs
):
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
**kwargs
)
pooled_output = self.dropout(outputs.last_hidden_state[:, 0]) # [CLS]
logits = {}
losses = {}
loss_total = 0
for head_name, head_layer in self.heads.items():
out = head_layer(pooled_output)
logits[head_name] = torch.sigmoid(out) # probabilities
if labels is not None and head_name in labels:
loss_fn = nn.BCEWithLogitsLoss()
loss = loss_fn(out, labels[head_name])
losses[head_name] = loss.item()
loss_total += loss
return {
"logits": logits,
"loss": loss_total if labels is not None else None,
"losses": losses if labels is not None else None
}
class QAMetricsInference:
"""
Inference class for QA metrics prediction on call center transcripts.
"""
def __init__(self, model_path: str, device: Optional[str] = None):
"""
Initialize the inference engine.
Args:
model_path: Path to the saved model directory
device: Device to run inference on ('cpu', 'cuda', or None for auto-detect)
"""
self.model_path = model_path
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.max_length = 512
# Load tokenizer and model
self._load_model()
def _load_model(self):
"""Load the trained model and tokenizer."""
print(f"Loading model from: {self.model_path}")
# Load tokenizer
try:
self.tokenizer = DistilBertTokenizer.from_pretrained(self.model_path)
print("β Tokenizer loaded successfully")
except Exception as e:
print(f"β Error loading tokenizer: {e}")
raise
# Load model
try:
if os.path.isdir(self.model_path):
# Load from local directory
config = AutoConfig.from_pretrained(self.model_path)
self.model = MultiHeadQAClassifier(config)
model_state_path = os.path.join(self.model_path, "pytorch_model.bin")
if not os.path.exists(model_state_path):
raise FileNotFoundError(f"Model file not found: {model_state_path}")
state_dict = torch.load(model_state_path, map_location=self.device)
self.model.load_state_dict(state_dict)
else:
# Load from Hugging Face Hub
self.model = MultiHeadQAClassifier.from_pretrained(self.model_path)
self.model.to(self.device)
self.model.eval()
print(f"β Model loaded successfully on {self.device}")
except Exception as e:
print(f"β Error loading model: {e}")
raise
def predict(self, text: str, threshold: float = 0.5, return_raw: bool = False) -> Dict:
"""
Predict QA metrics for a given transcript.
Args:
text: Input transcript text
threshold: Threshold for binary classification (default: 0.5)
return_raw: If True, return raw probabilities along with predictions
Returns:
Dictionary containing predictions for each QA head
"""
# Tokenize input
encoding = self.tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.max_length
)
input_ids = encoding["input_ids"].to(self.device)
attention_mask = encoding["attention_mask"].to(self.device)
# Forward pass
with torch.no_grad():
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs["logits"]
# Process results
results = {}
for head, probs in logits.items():
probs_np = probs.cpu().numpy()[0] # Get first (and only) example
preds = (probs_np > threshold).astype(int)
submetrics = HEAD_SUBMETRIC_LABELS.get(head, [f"Submetric {i+1}" for i in range(len(probs_np))])
head_results = []
for i, (label, prob, pred) in enumerate(zip(submetrics, probs_np, preds)):
result_item = {
"submetric": label,
"prediction": bool(pred),
"score": "β" if pred else "β"
}
if return_raw:
result_item["probability"] = float(prob)
head_results.append(result_item)
results[head] = head_results
return results
def predict_and_display(self, text: str, threshold: float = 0.5):
"""
Predict and display results in a formatted way.
Args:
text: Input transcript text
threshold: Threshold for binary classification
"""
print(f"\nπ Transcript Analysis")
print("=" * 60)
print(f"Text: {text[:200]}{'...' if len(text) > 200 else ''}")
print("=" * 60)
results = self.predict(text, threshold, return_raw=True)
for head, head_results in results.items():
print(f"\nπΉ {head.upper()}:")
for item in head_results:
prob = item["probability"]
print(f" β€ {item['submetric']}: P={prob:.3f} β {item['score']}")
def batch_predict(self, texts: List[str], threshold: float = 0.5) -> List[Dict]:
"""
Predict QA metrics for multiple transcripts.
Args:
texts: List of transcript texts
threshold: Threshold for binary classification
Returns:
List of prediction dictionaries
"""
results = []
for text in texts:
result = self.predict(text, threshold)
results.append(result)
return results
def export_predictions(self, texts: List[str], output_path: str, threshold: float = 0.5):
"""
Export predictions to a JSON file.
Args:
texts: List of transcript texts
output_path: Path to save the results
threshold: Threshold for binary classification
"""
results = []
for i, text in enumerate(texts):
prediction = self.predict(text, threshold, return_raw=True)
results.append({
"text_id": i,
"text": text,
"predictions": prediction
})
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"β Predictions exported to: {output_path}")
def main():
"""Main function for command-line interface."""
parser = argparse.ArgumentParser(description="QA Metrics Inference Script")
parser.add_argument("--model_path", required=True, help="Path to the trained model directory")
parser.add_argument("--text", help="Text to analyze")
parser.add_argument("--input_file", help="Path to text file containing transcripts (one per line)")
parser.add_argument("--output_file", help="Path to save predictions (JSON format)")
parser.add_argument("--threshold", type=float, default=0.5, help="Classification threshold (default: 0.5)")
parser.add_argument("--interactive", action="store_true", help="Run in interactive mode")
parser.add_argument("--device", help="Device to use (cpu/cuda)")
args = parser.parse_args()
# Initialize inference engine
try:
inference_engine = QAMetricsInference(args.model_path, args.device)
except Exception as e:
print(f"Failed to initialize inference engine: {e}")
return
# Interactive mode
if args.interactive:
print("\nπ€ QA Metrics Interactive Analysis")
print("Type 'quit' to exit, 'help' for commands")
print("-" * 50)
while True:
try:
user_input = input("\nEnter transcript text: ").strip()
if user_input.lower() == 'quit':
break
elif user_input.lower() == 'help':
print("\nCommands:")
print(" - Enter transcript text to analyze")
print(" - 'quit' to exit")
print(" - 'help' to show this message")
continue
elif not user_input:
print("Please enter some text to analyze.")
continue
inference_engine.predict_and_display(user_input, args.threshold)
except KeyboardInterrupt:
print("\n\nGoodbye! π")
break
except Exception as e:
print(f"Error during analysis: {e}")
# Single text analysis
elif args.text:
inference_engine.predict_and_display(args.text, args.threshold)
# Batch processing from file
elif args.input_file:
try:
with open(args.input_file, 'r', encoding='utf-8') as f:
texts = [line.strip() for line in f if line.strip()]
print(f"Processing {len(texts)} transcripts...")
if args.output_file:
inference_engine.export_predictions(texts, args.output_file, args.threshold)
else:
results = inference_engine.batch_predict(texts, args.threshold)
for i, result in enumerate(results):
print(f"\n--- Transcript {i+1} ---")
print(json.dumps(result, indent=2))
except FileNotFoundError:
print(f"Input file not found: {args.input_file}")
except Exception as e:
print(f"Error processing file: {e}")
else:
print("Please provide either --text, --input_file, or use --interactive mode")
print("Use --help for more information")
if __name__ == "__main__":
main() |