Upload QA Multi-Head DistilBERT model
Browse files- README.md +188 -0
- config.json +50 -0
- inference.py +392 -0
- modeling_multihead_qa.py +78 -0
- pytorch_model.bin +3 -0
- requirements.txt +4 -0
- special_tokens_map.json +7 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
library_name: transformers
|
| 4 |
+
pipeline_tag: text-classification
|
| 5 |
+
tags:
|
| 6 |
+
- qa-metrics
|
| 7 |
+
- call-center
|
| 8 |
+
- multi-head
|
| 9 |
+
- distilbert
|
| 10 |
+
- transcript-analysis
|
| 11 |
+
- customer-service
|
| 12 |
+
- quality-assurance
|
| 13 |
+
language:
|
| 14 |
+
- en
|
| 15 |
+
- sw
|
| 16 |
+
datasets:
|
| 17 |
+
- custom
|
| 18 |
+
metrics:
|
| 19 |
+
- accuracy
|
| 20 |
+
- f1
|
| 21 |
+
- precision
|
| 22 |
+
- recall
|
| 23 |
+
model-index:
|
| 24 |
+
- name: qa-multihead-distilbert
|
| 25 |
+
results:
|
| 26 |
+
- task:
|
| 27 |
+
type: text-classification
|
| 28 |
+
name: QA Metrics Classification
|
| 29 |
+
metrics:
|
| 30 |
+
- type: accuracy
|
| 31 |
+
value: 0.85
|
| 32 |
+
- type: f1
|
| 33 |
+
value: 0.82
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
# QA Multi-Head DistilBERT Classifier
|
| 37 |
+
|
| 38 |
+
## Model Description
|
| 39 |
+
|
| 40 |
+
This is a fine-tuned DistilBERT model for multi-head quality assurance (QA) metrics evaluation of call center transcripts. The model evaluates transcripts across six key QA dimensions with multiple sub-metrics per dimension.
|
| 41 |
+
|
| 42 |
+
## Model Architecture
|
| 43 |
+
|
| 44 |
+
- **Base Model**: DistilBERT (distilbert-base-uncased)
|
| 45 |
+
- **Architecture**: Multi-head classifier with 6 specialized heads
|
| 46 |
+
- **Input**: Call center transcripts (max 512 tokens)
|
| 47 |
+
- **Output**: Binary predictions for 17 QA sub-metrics
|
| 48 |
+
|
| 49 |
+
## QA Heads Configuration
|
| 50 |
+
|
| 51 |
+
| Head | Sub-metrics | Description |
|
| 52 |
+
|------|-------------|-------------|
|
| 53 |
+
| **Opening** (1) | Call opening phrase | Evaluates proper call initiation |
|
| 54 |
+
| **Listening** (5) | Non-interruption, empathy, paraphrasing, politeness, confidence | Assesses active listening skills |
|
| 55 |
+
| **Proactiveness** (3) | Extra issue solving, satisfaction confirmation, follow-up | Measures proactive service approach |
|
| 56 |
+
| **Resolution** (5) | Accuracy, language use, consultation, process following, clarity | Evaluates problem-solving effectiveness |
|
| 57 |
+
| **Hold** (2) | Hold explanation, holding gratitude | Assesses proper hold procedures |
|
| 58 |
+
| **Closing** (1) | Proper closing phrase | Evaluates call conclusion |
|
| 59 |
+
|
| 60 |
+
## Usage
|
| 61 |
+
|
| 62 |
+
### Direct Usage with Transformers
|
| 63 |
+
|
| 64 |
+
```python
|
| 65 |
+
import torch
|
| 66 |
+
from transformers import DistilBertTokenizer
|
| 67 |
+
from modeling_multihead_qa import MultiHeadQAClassifier
|
| 68 |
+
|
| 69 |
+
# Load model and tokenizer
|
| 70 |
+
model = MultiHeadQAClassifier.from_pretrained("your-username/qa-multihead-distilbert")
|
| 71 |
+
tokenizer = DistilBertTokenizer.from_pretrained("your-username/qa-multihead-distilbert")
|
| 72 |
+
|
| 73 |
+
# Prepare input
|
| 74 |
+
text = "Hello, thank you for calling our support line. How can I help you today?"
|
| 75 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 76 |
+
|
| 77 |
+
# Get predictions
|
| 78 |
+
with torch.no_grad():
|
| 79 |
+
outputs = model(**inputs)
|
| 80 |
+
predictions = outputs["logits"]
|
| 81 |
+
|
| 82 |
+
# Process results
|
| 83 |
+
for head_name, probs in predictions.items():
|
| 84 |
+
print(f"{head_name}: {probs.cpu().numpy()}")
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
### Using the Inference Class
|
| 88 |
+
|
| 89 |
+
```python
|
| 90 |
+
from inference import QAMetricsInference
|
| 91 |
+
|
| 92 |
+
# Initialize inference engine
|
| 93 |
+
engine = QAMetricsInference("your-username/qa-multihead-distilbert")
|
| 94 |
+
|
| 95 |
+
# Analyze transcript
|
| 96 |
+
text = "Your transcript here..."
|
| 97 |
+
results = engine.predict(text, threshold=0.5, return_raw=True)
|
| 98 |
+
|
| 99 |
+
# Display formatted results
|
| 100 |
+
engine.predict_and_display(text)
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
## Training Details
|
| 104 |
+
|
| 105 |
+
### Training Data
|
| 106 |
+
- **Domain**: Call center transcripts
|
| 107 |
+
- **Languages**: English, Swahili
|
| 108 |
+
- **Size**: Custom dataset with balanced QA metrics
|
| 109 |
+
- **Preprocessing**: PII removal, text chunking, quality filtering
|
| 110 |
+
|
| 111 |
+
### Training Configuration
|
| 112 |
+
- **Base Model**: distilbert-base-uncased
|
| 113 |
+
- **Optimization**: AdamW optimizer
|
| 114 |
+
- **Loss Function**: BCEWithLogitsLoss (per head)
|
| 115 |
+
- **Batch Size**: 16
|
| 116 |
+
- **Learning Rate**: 2e-5
|
| 117 |
+
- **Training Steps**: Multiple epochs with validation
|
| 118 |
+
|
| 119 |
+
### Performance
|
| 120 |
+
|
| 121 |
+
The model achieves strong performance across most QA dimensions:
|
| 122 |
+
|
| 123 |
+
| Head | Accuracy | Status |
|
| 124 |
+
|------|----------|---------|
|
| 125 |
+
| Opening | ~90% | ✅ Excellent |
|
| 126 |
+
| Closing | ~90% | ✅ Excellent |
|
| 127 |
+
| Hold | ~90% | ✅ Excellent |
|
| 128 |
+
| Listening | ~65% | ⚠️ Improving |
|
| 129 |
+
| Proactiveness | ~70% | ⚠️ Improving |
|
| 130 |
+
| Resolution | ~68% | ⚠️ Improving |
|
| 131 |
+
|
| 132 |
+
## Limitations and Bias
|
| 133 |
+
|
| 134 |
+
- **Domain Specific**: Optimized for call center/helpline contexts
|
| 135 |
+
- **Language Balance**: Primary training on English with Swahili fine-tuning
|
| 136 |
+
- **Context Length**: Limited to 512 tokens (longer transcripts need chunking)
|
| 137 |
+
- **Cultural Context**: Trained on East African call center patterns
|
| 138 |
+
|
| 139 |
+
## Intended Use
|
| 140 |
+
|
| 141 |
+
### Primary Applications
|
| 142 |
+
- Call center quality assurance automation
|
| 143 |
+
- Agent performance evaluation
|
| 144 |
+
- Training feedback systems
|
| 145 |
+
- Compliance monitoring
|
| 146 |
+
|
| 147 |
+
### Out of Scope
|
| 148 |
+
- General text classification
|
| 149 |
+
- Non-customer service contexts
|
| 150 |
+
- Real-time streaming applications without preprocessing
|
| 151 |
+
|
| 152 |
+
## Ethical Considerations
|
| 153 |
+
|
| 154 |
+
This model is designed to support human quality assurance processes, not replace human judgment. It should be used to:
|
| 155 |
+
- Provide consistent initial assessments
|
| 156 |
+
- Identify areas needing human review
|
| 157 |
+
- Support training and development programs
|
| 158 |
+
|
| 159 |
+
## Model Developers
|
| 160 |
+
|
| 161 |
+
**BITZ IT Consulting** - AI Solutions for Social Impact
|
| 162 |
+
- Data Engineering Lead: [Your Name]
|
| 163 |
+
- ML Engineering: Rogendo
|
| 164 |
+
- Data Analysis: Shemmiriam
|
| 165 |
+
- Quality Assurance: Nelsonadagi
|
| 166 |
+
|
| 167 |
+
## Citation
|
| 168 |
+
|
| 169 |
+
```bibtex
|
| 170 |
+
@model{qa_multihead_distilbert_2025,
|
| 171 |
+
title={QA Multi-Head DistilBERT for Call Center Quality Assessment},
|
| 172 |
+
author={BITZ IT Consulting Team},
|
| 173 |
+
year={2025},
|
| 174 |
+
publisher={Hugging Face},
|
| 175 |
+
journal={Hugging Face Model Hub},
|
| 176 |
+
howpublished={\url{https://huggingface.co/your-username/qa-multihead-distilbert}}
|
| 177 |
+
}
|
| 178 |
+
```
|
| 179 |
+
|
| 180 |
+
## License
|
| 181 |
+
|
| 182 |
+
Apache 2.0
|
| 183 |
+
|
| 184 |
+
## Contact
|
| 185 |
+
|
| 186 |
+
For questions about this model, please reach out via:
|
| 187 |
+
- GitHub Issues: [Your Repository]
|
| 188 |
+
- Email: [Your Contact Email]
|
config.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "distilbert-base-uncased",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MultiHeadQAClassifier"
|
| 5 |
+
],
|
| 6 |
+
"model_type": "distilbert",
|
| 7 |
+
"custom_model": true,
|
| 8 |
+
"heads_config": {
|
| 9 |
+
"opening": 1,
|
| 10 |
+
"listening": 5,
|
| 11 |
+
"proactiveness": 3,
|
| 12 |
+
"resolution": 5,
|
| 13 |
+
"hold": 2,
|
| 14 |
+
"closing": 1
|
| 15 |
+
},
|
| 16 |
+
"head_submetric_labels": {
|
| 17 |
+
"opening": [
|
| 18 |
+
"Use of call opening phrase"
|
| 19 |
+
],
|
| 20 |
+
"listening": [
|
| 21 |
+
"Caller was not interrupted",
|
| 22 |
+
"Empathizes with the caller",
|
| 23 |
+
"Paraphrases or rephrases the issue",
|
| 24 |
+
"Uses 'please' and 'thank you'",
|
| 25 |
+
"Does not hesitate or sound unsure"
|
| 26 |
+
],
|
| 27 |
+
"proactiveness": [
|
| 28 |
+
"Willing to solve extra issues",
|
| 29 |
+
"Confirms satisfaction with action points",
|
| 30 |
+
"Follows up on case updates"
|
| 31 |
+
],
|
| 32 |
+
"resolution": [
|
| 33 |
+
"Gives accurate information",
|
| 34 |
+
"Correct language use",
|
| 35 |
+
"Consults if unsure",
|
| 36 |
+
"Follows correct steps",
|
| 37 |
+
"Explains solution process clearly"
|
| 38 |
+
],
|
| 39 |
+
"hold": [
|
| 40 |
+
"Explains before placing on hold",
|
| 41 |
+
"Thanks caller for holding"
|
| 42 |
+
],
|
| 43 |
+
"closing": [
|
| 44 |
+
"Proper call closing phrase used"
|
| 45 |
+
]
|
| 46 |
+
},
|
| 47 |
+
"dropout": 0.2,
|
| 48 |
+
"max_position_embeddings": 512,
|
| 49 |
+
"vocab_size": 30522
|
| 50 |
+
}
|
inference.py
ADDED
|
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Multi-Head QA Metrics Inference Script
|
| 4 |
+
=====================================
|
| 5 |
+
|
| 6 |
+
This script loads a trained multi-head QA classification model and provides
|
| 7 |
+
inference capabilities for evaluating call center transcripts against various
|
| 8 |
+
QA metrics including opening, listening, proactiveness, resolution, hold, and closing.
|
| 9 |
+
|
| 10 |
+
Usage:
|
| 11 |
+
python inference.py --model_path "path/to/model" --text "transcript text"
|
| 12 |
+
|
| 13 |
+
Or use the interactive mode:
|
| 14 |
+
python inference.py --model_path "path/to/model" --interactive
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
import os
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
import numpy as np
|
| 21 |
+
import argparse
|
| 22 |
+
import json
|
| 23 |
+
from typing import Dict, List, Optional
|
| 24 |
+
from transformers import DistilBertTokenizer, DistilBertModel, AutoConfig, DistilBertPreTrainedModel
|
| 25 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# QA Heads Configuration - must match training configuration
|
| 29 |
+
QA_HEADS_CONFIG = {
|
| 30 |
+
"opening": 1,
|
| 31 |
+
"listening": 5,
|
| 32 |
+
"proactiveness": 3,
|
| 33 |
+
"resolution": 5,
|
| 34 |
+
"hold": 2,
|
| 35 |
+
"closing": 1
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
# Submetric labels for better output interpretation
|
| 39 |
+
HEAD_SUBMETRIC_LABELS = {
|
| 40 |
+
"opening": [
|
| 41 |
+
"Use of call opening phrase"
|
| 42 |
+
],
|
| 43 |
+
"listening": [
|
| 44 |
+
"Caller was not interrupted",
|
| 45 |
+
"Empathizes with the caller",
|
| 46 |
+
"Paraphrases or rephrases the issue",
|
| 47 |
+
"Uses 'please' and 'thank you'",
|
| 48 |
+
"Does not hesitate or sound unsure"
|
| 49 |
+
],
|
| 50 |
+
"proactiveness": [
|
| 51 |
+
"Willing to solve extra issues",
|
| 52 |
+
"Confirms satisfaction with action points",
|
| 53 |
+
"Follows up on case updates"
|
| 54 |
+
],
|
| 55 |
+
"resolution": [
|
| 56 |
+
"Gives accurate information",
|
| 57 |
+
"Correct language use",
|
| 58 |
+
"Consults if unsure",
|
| 59 |
+
"Follows correct steps",
|
| 60 |
+
"Explains solution process clearly"
|
| 61 |
+
],
|
| 62 |
+
"hold": [
|
| 63 |
+
"Explains before placing on hold",
|
| 64 |
+
# "Provides status update after hold",
|
| 65 |
+
"Thanks caller for holding"
|
| 66 |
+
],
|
| 67 |
+
"closing": [
|
| 68 |
+
"Proper call closing phrase used"
|
| 69 |
+
]
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class MultiHeadQAClassifier(DistilBertPreTrainedModel):
|
| 74 |
+
"""
|
| 75 |
+
Multi-head QA classifier model for call center transcript evaluation.
|
| 76 |
+
Each head corresponds to a different QA metric.
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
def __init__(self, config):
|
| 80 |
+
super().__init__(config)
|
| 81 |
+
|
| 82 |
+
# Get heads config from model config
|
| 83 |
+
self.heads_config = getattr(config, 'heads_config', {
|
| 84 |
+
"opening": 1,
|
| 85 |
+
"listening": 5,
|
| 86 |
+
"proactiveness": 3,
|
| 87 |
+
"resolution": 5,
|
| 88 |
+
"hold": 2,
|
| 89 |
+
"closing": 1
|
| 90 |
+
})
|
| 91 |
+
|
| 92 |
+
self.bert = DistilBertModel(config)
|
| 93 |
+
classifier_dropout = getattr(config, 'classifier_dropout', 0.2)
|
| 94 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 95 |
+
|
| 96 |
+
# Multiple heads, one per QA metric
|
| 97 |
+
self.heads = nn.ModuleDict({
|
| 98 |
+
head: nn.Linear(config.hidden_size, output_dim)
|
| 99 |
+
for head, output_dim in self.heads_config.items()
|
| 100 |
+
})
|
| 101 |
+
|
| 102 |
+
# Initialize weights
|
| 103 |
+
self.post_init()
|
| 104 |
+
|
| 105 |
+
def forward(
|
| 106 |
+
self,
|
| 107 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 108 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 109 |
+
labels: Optional[Dict[str, torch.Tensor]] = None,
|
| 110 |
+
**kwargs
|
| 111 |
+
):
|
| 112 |
+
outputs = self.bert(
|
| 113 |
+
input_ids=input_ids,
|
| 114 |
+
attention_mask=attention_mask,
|
| 115 |
+
**kwargs
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
pooled_output = self.dropout(outputs.last_hidden_state[:, 0]) # [CLS]
|
| 119 |
+
|
| 120 |
+
logits = {}
|
| 121 |
+
losses = {}
|
| 122 |
+
loss_total = 0
|
| 123 |
+
|
| 124 |
+
for head_name, head_layer in self.heads.items():
|
| 125 |
+
out = head_layer(pooled_output)
|
| 126 |
+
logits[head_name] = torch.sigmoid(out) # probabilities
|
| 127 |
+
|
| 128 |
+
if labels is not None and head_name in labels:
|
| 129 |
+
loss_fn = nn.BCEWithLogitsLoss()
|
| 130 |
+
loss = loss_fn(out, labels[head_name])
|
| 131 |
+
losses[head_name] = loss.item()
|
| 132 |
+
loss_total += loss
|
| 133 |
+
|
| 134 |
+
return {
|
| 135 |
+
"logits": logits,
|
| 136 |
+
"loss": loss_total if labels is not None else None,
|
| 137 |
+
"losses": losses if labels is not None else None
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class QAMetricsInference:
|
| 142 |
+
"""
|
| 143 |
+
Inference class for QA metrics prediction on call center transcripts.
|
| 144 |
+
"""
|
| 145 |
+
|
| 146 |
+
def __init__(self, model_path: str, device: Optional[str] = None):
|
| 147 |
+
"""
|
| 148 |
+
Initialize the inference engine.
|
| 149 |
+
|
| 150 |
+
Args:
|
| 151 |
+
model_path: Path to the saved model directory
|
| 152 |
+
device: Device to run inference on ('cpu', 'cuda', or None for auto-detect)
|
| 153 |
+
"""
|
| 154 |
+
self.model_path = model_path
|
| 155 |
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 156 |
+
self.max_length = 512
|
| 157 |
+
|
| 158 |
+
# Load tokenizer and model
|
| 159 |
+
self._load_model()
|
| 160 |
+
|
| 161 |
+
def _load_model(self):
|
| 162 |
+
"""Load the trained model and tokenizer."""
|
| 163 |
+
print(f"Loading model from: {self.model_path}")
|
| 164 |
+
|
| 165 |
+
# Load tokenizer
|
| 166 |
+
try:
|
| 167 |
+
self.tokenizer = DistilBertTokenizer.from_pretrained(self.model_path)
|
| 168 |
+
print("✓ Tokenizer loaded successfully")
|
| 169 |
+
except Exception as e:
|
| 170 |
+
print(f"✗ Error loading tokenizer: {e}")
|
| 171 |
+
raise
|
| 172 |
+
|
| 173 |
+
# Load model
|
| 174 |
+
try:
|
| 175 |
+
if os.path.isdir(self.model_path):
|
| 176 |
+
# Load from local directory
|
| 177 |
+
config = AutoConfig.from_pretrained(self.model_path)
|
| 178 |
+
self.model = MultiHeadQAClassifier(config)
|
| 179 |
+
model_state_path = os.path.join(self.model_path, "pytorch_model.bin")
|
| 180 |
+
|
| 181 |
+
if not os.path.exists(model_state_path):
|
| 182 |
+
raise FileNotFoundError(f"Model file not found: {model_state_path}")
|
| 183 |
+
|
| 184 |
+
state_dict = torch.load(model_state_path, map_location=self.device)
|
| 185 |
+
self.model.load_state_dict(state_dict)
|
| 186 |
+
else:
|
| 187 |
+
# Load from Hugging Face Hub
|
| 188 |
+
self.model = MultiHeadQAClassifier.from_pretrained(self.model_path)
|
| 189 |
+
|
| 190 |
+
self.model.to(self.device)
|
| 191 |
+
self.model.eval()
|
| 192 |
+
print(f"✓ Model loaded successfully on {self.device}")
|
| 193 |
+
except Exception as e:
|
| 194 |
+
print(f"✗ Error loading model: {e}")
|
| 195 |
+
raise
|
| 196 |
+
|
| 197 |
+
def predict(self, text: str, threshold: float = 0.5, return_raw: bool = False) -> Dict:
|
| 198 |
+
"""
|
| 199 |
+
Predict QA metrics for a given transcript.
|
| 200 |
+
|
| 201 |
+
Args:
|
| 202 |
+
text: Input transcript text
|
| 203 |
+
threshold: Threshold for binary classification (default: 0.5)
|
| 204 |
+
return_raw: If True, return raw probabilities along with predictions
|
| 205 |
+
|
| 206 |
+
Returns:
|
| 207 |
+
Dictionary containing predictions for each QA head
|
| 208 |
+
"""
|
| 209 |
+
# Tokenize input
|
| 210 |
+
encoding = self.tokenizer(
|
| 211 |
+
text,
|
| 212 |
+
return_tensors="pt",
|
| 213 |
+
padding="max_length",
|
| 214 |
+
truncation=True,
|
| 215 |
+
max_length=self.max_length
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
input_ids = encoding["input_ids"].to(self.device)
|
| 219 |
+
attention_mask = encoding["attention_mask"].to(self.device)
|
| 220 |
+
|
| 221 |
+
# Forward pass
|
| 222 |
+
with torch.no_grad():
|
| 223 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
| 224 |
+
logits = outputs["logits"]
|
| 225 |
+
|
| 226 |
+
# Process results
|
| 227 |
+
results = {}
|
| 228 |
+
for head, probs in logits.items():
|
| 229 |
+
probs_np = probs.cpu().numpy()[0] # Get first (and only) example
|
| 230 |
+
preds = (probs_np > threshold).astype(int)
|
| 231 |
+
submetrics = HEAD_SUBMETRIC_LABELS.get(head, [f"Submetric {i+1}" for i in range(len(probs_np))])
|
| 232 |
+
|
| 233 |
+
head_results = []
|
| 234 |
+
for i, (label, prob, pred) in enumerate(zip(submetrics, probs_np, preds)):
|
| 235 |
+
result_item = {
|
| 236 |
+
"submetric": label,
|
| 237 |
+
"prediction": bool(pred),
|
| 238 |
+
"score": "✓" if pred else "✗"
|
| 239 |
+
}
|
| 240 |
+
if return_raw:
|
| 241 |
+
result_item["probability"] = float(prob)
|
| 242 |
+
|
| 243 |
+
head_results.append(result_item)
|
| 244 |
+
|
| 245 |
+
results[head] = head_results
|
| 246 |
+
|
| 247 |
+
return results
|
| 248 |
+
|
| 249 |
+
def predict_and_display(self, text: str, threshold: float = 0.5):
|
| 250 |
+
"""
|
| 251 |
+
Predict and display results in a formatted way.
|
| 252 |
+
|
| 253 |
+
Args:
|
| 254 |
+
text: Input transcript text
|
| 255 |
+
threshold: Threshold for binary classification
|
| 256 |
+
"""
|
| 257 |
+
print(f"\n📞 Transcript Analysis")
|
| 258 |
+
print("=" * 60)
|
| 259 |
+
print(f"Text: {text[:200]}{'...' if len(text) > 200 else ''}")
|
| 260 |
+
print("=" * 60)
|
| 261 |
+
|
| 262 |
+
results = self.predict(text, threshold, return_raw=True)
|
| 263 |
+
|
| 264 |
+
for head, head_results in results.items():
|
| 265 |
+
print(f"\n🔹 {head.upper()}:")
|
| 266 |
+
for item in head_results:
|
| 267 |
+
prob = item["probability"]
|
| 268 |
+
print(f" ➤ {item['submetric']}: P={prob:.3f} → {item['score']}")
|
| 269 |
+
|
| 270 |
+
def batch_predict(self, texts: List[str], threshold: float = 0.5) -> List[Dict]:
|
| 271 |
+
"""
|
| 272 |
+
Predict QA metrics for multiple transcripts.
|
| 273 |
+
|
| 274 |
+
Args:
|
| 275 |
+
texts: List of transcript texts
|
| 276 |
+
threshold: Threshold for binary classification
|
| 277 |
+
|
| 278 |
+
Returns:
|
| 279 |
+
List of prediction dictionaries
|
| 280 |
+
"""
|
| 281 |
+
results = []
|
| 282 |
+
for text in texts:
|
| 283 |
+
result = self.predict(text, threshold)
|
| 284 |
+
results.append(result)
|
| 285 |
+
return results
|
| 286 |
+
|
| 287 |
+
def export_predictions(self, texts: List[str], output_path: str, threshold: float = 0.5):
|
| 288 |
+
"""
|
| 289 |
+
Export predictions to a JSON file.
|
| 290 |
+
|
| 291 |
+
Args:
|
| 292 |
+
texts: List of transcript texts
|
| 293 |
+
output_path: Path to save the results
|
| 294 |
+
threshold: Threshold for binary classification
|
| 295 |
+
"""
|
| 296 |
+
results = []
|
| 297 |
+
for i, text in enumerate(texts):
|
| 298 |
+
prediction = self.predict(text, threshold, return_raw=True)
|
| 299 |
+
results.append({
|
| 300 |
+
"text_id": i,
|
| 301 |
+
"text": text,
|
| 302 |
+
"predictions": prediction
|
| 303 |
+
})
|
| 304 |
+
|
| 305 |
+
with open(output_path, 'w', encoding='utf-8') as f:
|
| 306 |
+
json.dump(results, f, indent=2, ensure_ascii=False)
|
| 307 |
+
|
| 308 |
+
print(f"✓ Predictions exported to: {output_path}")
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def main():
|
| 312 |
+
"""Main function for command-line interface."""
|
| 313 |
+
parser = argparse.ArgumentParser(description="QA Metrics Inference Script")
|
| 314 |
+
parser.add_argument("--model_path", required=True, help="Path to the trained model directory")
|
| 315 |
+
parser.add_argument("--text", help="Text to analyze")
|
| 316 |
+
parser.add_argument("--input_file", help="Path to text file containing transcripts (one per line)")
|
| 317 |
+
parser.add_argument("--output_file", help="Path to save predictions (JSON format)")
|
| 318 |
+
parser.add_argument("--threshold", type=float, default=0.5, help="Classification threshold (default: 0.5)")
|
| 319 |
+
parser.add_argument("--interactive", action="store_true", help="Run in interactive mode")
|
| 320 |
+
parser.add_argument("--device", help="Device to use (cpu/cuda)")
|
| 321 |
+
|
| 322 |
+
args = parser.parse_args()
|
| 323 |
+
|
| 324 |
+
# Initialize inference engine
|
| 325 |
+
try:
|
| 326 |
+
inference_engine = QAMetricsInference(args.model_path, args.device)
|
| 327 |
+
except Exception as e:
|
| 328 |
+
print(f"Failed to initialize inference engine: {e}")
|
| 329 |
+
return
|
| 330 |
+
|
| 331 |
+
# Interactive mode
|
| 332 |
+
if args.interactive:
|
| 333 |
+
print("\n🤖 QA Metrics Interactive Analysis")
|
| 334 |
+
print("Type 'quit' to exit, 'help' for commands")
|
| 335 |
+
print("-" * 50)
|
| 336 |
+
|
| 337 |
+
while True:
|
| 338 |
+
try:
|
| 339 |
+
user_input = input("\nEnter transcript text: ").strip()
|
| 340 |
+
|
| 341 |
+
if user_input.lower() == 'quit':
|
| 342 |
+
break
|
| 343 |
+
elif user_input.lower() == 'help':
|
| 344 |
+
print("\nCommands:")
|
| 345 |
+
print(" - Enter transcript text to analyze")
|
| 346 |
+
print(" - 'quit' to exit")
|
| 347 |
+
print(" - 'help' to show this message")
|
| 348 |
+
continue
|
| 349 |
+
elif not user_input:
|
| 350 |
+
print("Please enter some text to analyze.")
|
| 351 |
+
continue
|
| 352 |
+
|
| 353 |
+
inference_engine.predict_and_display(user_input, args.threshold)
|
| 354 |
+
|
| 355 |
+
except KeyboardInterrupt:
|
| 356 |
+
print("\n\nGoodbye! 👋")
|
| 357 |
+
break
|
| 358 |
+
except Exception as e:
|
| 359 |
+
print(f"Error during analysis: {e}")
|
| 360 |
+
|
| 361 |
+
# Single text analysis
|
| 362 |
+
elif args.text:
|
| 363 |
+
inference_engine.predict_and_display(args.text, args.threshold)
|
| 364 |
+
|
| 365 |
+
# Batch processing from file
|
| 366 |
+
elif args.input_file:
|
| 367 |
+
try:
|
| 368 |
+
with open(args.input_file, 'r', encoding='utf-8') as f:
|
| 369 |
+
texts = [line.strip() for line in f if line.strip()]
|
| 370 |
+
|
| 371 |
+
print(f"Processing {len(texts)} transcripts...")
|
| 372 |
+
|
| 373 |
+
if args.output_file:
|
| 374 |
+
inference_engine.export_predictions(texts, args.output_file, args.threshold)
|
| 375 |
+
else:
|
| 376 |
+
results = inference_engine.batch_predict(texts, args.threshold)
|
| 377 |
+
for i, result in enumerate(results):
|
| 378 |
+
print(f"\n--- Transcript {i+1} ---")
|
| 379 |
+
print(json.dumps(result, indent=2))
|
| 380 |
+
|
| 381 |
+
except FileNotFoundError:
|
| 382 |
+
print(f"Input file not found: {args.input_file}")
|
| 383 |
+
except Exception as e:
|
| 384 |
+
print(f"Error processing file: {e}")
|
| 385 |
+
|
| 386 |
+
else:
|
| 387 |
+
print("Please provide either --text, --input_file, or use --interactive mode")
|
| 388 |
+
print("Use --help for more information")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
if __name__ == "__main__":
|
| 392 |
+
main()
|
modeling_multihead_qa.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Multi-Head QA Classifier Model for Hugging Face Hub
|
| 3 |
+
==================================================
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from transformers import DistilBertModel, DistilBertPreTrainedModel
|
| 9 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 10 |
+
from typing import Optional, Dict
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class MultiHeadQAClassifier(DistilBertPreTrainedModel):
|
| 14 |
+
"""
|
| 15 |
+
Multi-head QA classifier model for call center transcript evaluation.
|
| 16 |
+
Each head corresponds to a different QA metric.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
def __init__(self, config):
|
| 20 |
+
super().__init__(config)
|
| 21 |
+
|
| 22 |
+
# Get heads config from model config
|
| 23 |
+
self.heads_config = getattr(config, 'heads_config', {
|
| 24 |
+
"opening": 1,
|
| 25 |
+
"listening": 5,
|
| 26 |
+
"proactiveness": 3,
|
| 27 |
+
"resolution": 5,
|
| 28 |
+
"hold": 2,
|
| 29 |
+
"closing": 1
|
| 30 |
+
})
|
| 31 |
+
|
| 32 |
+
self.bert = DistilBertModel(config)
|
| 33 |
+
classifier_dropout = getattr(config, 'classifier_dropout', 0.2)
|
| 34 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 35 |
+
|
| 36 |
+
# Multiple heads, one per QA metric
|
| 37 |
+
self.heads = nn.ModuleDict({
|
| 38 |
+
head: nn.Linear(config.hidden_size, output_dim)
|
| 39 |
+
for head, output_dim in self.heads_config.items()
|
| 40 |
+
})
|
| 41 |
+
|
| 42 |
+
# Initialize weights
|
| 43 |
+
self.post_init()
|
| 44 |
+
|
| 45 |
+
def forward(
|
| 46 |
+
self,
|
| 47 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 48 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 49 |
+
labels: Optional[Dict[str, torch.Tensor]] = None,
|
| 50 |
+
**kwargs
|
| 51 |
+
):
|
| 52 |
+
outputs = self.bert(
|
| 53 |
+
input_ids=input_ids,
|
| 54 |
+
attention_mask=attention_mask,
|
| 55 |
+
**kwargs
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
pooled_output = self.dropout(outputs.last_hidden_state[:, 0]) # [CLS]
|
| 59 |
+
|
| 60 |
+
logits = {}
|
| 61 |
+
losses = {}
|
| 62 |
+
loss_total = 0
|
| 63 |
+
|
| 64 |
+
for head_name, head_layer in self.heads.items():
|
| 65 |
+
out = head_layer(pooled_output)
|
| 66 |
+
logits[head_name] = torch.sigmoid(out) # probabilities
|
| 67 |
+
|
| 68 |
+
if labels is not None and head_name in labels:
|
| 69 |
+
loss_fn = nn.BCEWithLogitsLoss()
|
| 70 |
+
loss = loss_fn(out, labels[head_name])
|
| 71 |
+
losses[head_name] = loss.item()
|
| 72 |
+
loss_total += loss
|
| 73 |
+
|
| 74 |
+
return {
|
| 75 |
+
"logits": logits,
|
| 76 |
+
"loss": loss_total if labels is not None else None,
|
| 77 |
+
"losses": losses if labels is not None else None
|
| 78 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:49cd26533720192c40599d70027931f9439481e44d1fe80a35e77509564bf77e
|
| 3 |
+
size 265547875
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=1.9.0
|
| 2 |
+
transformers>=4.20.0
|
| 3 |
+
numpy>=1.21.0
|
| 4 |
+
huggingface-hub>=0.10.0
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "DistilBertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|