v2_vi2en - Vietnamese-English Translation
Model Description
Improved Vi→En training with label smoothing and AdamW
This model is trained from scratch using the Transformer architecture for machine translation.
Model Details
- Language pair: Vietnamese → English
- Architecture: Transformer (Encoder-Decoder)
- Parameters:
- d_model: 512
- n_heads: 8
- n_encoder_layers: 6
- n_decoder_layers: 6
- d_ff: 2048
- dropout: 0.1
Training Details
- Optimizer: ADAMW
- Learning Rate: 0.0001
- Batch Size: 32
- Label Smoothing: 0.1
- Scheduler: warmup
- Dataset: IWSLT 2015 Vi-En
Performance
Improvements
- Label smoothing (0.1)
- AdamW optimizer with weight decay
- Beam search (size=5)
- Gradient accumulation
- Early stopping
Usage
# Load model and translate
from src.models.transformer import Transformer
from src.inference.translator import Translator
from src.data.vocabulary import Vocabulary
import torch
# Load vocabularies
src_vocab = Vocabulary.load('src_vocab.json')
tgt_vocab = Vocabulary.load('tgt_vocab.json')
# Load model
model = Transformer(
src_vocab_size=len(src_vocab),
tgt_vocab_size=len(tgt_vocab),
d_model=512,
n_heads=8,
n_encoder_layers=6,
n_decoder_layers=6,
d_ff=2048,
dropout=0.1,
max_seq_length=512,
pad_idx=0
)
checkpoint = torch.load('best_model.pt')
model.load_state_dict(checkpoint['model_state_dict'])
# Create translator
translator = Translator(
model=model,
src_vocab=src_vocab,
tgt_vocab=tgt_vocab,
device='cuda',
decoding_method='beam',
beam_size=5
)
# Translate
vietnamese_text = "Xin chào, bạn khỏe không?"
translation = translator.translate(vietnamese_text)
print(translation)
Training Data
- Dataset: IWSLT 2015 Vietnamese-English parallel corpus
- Training pairs: ~500,000 sentence pairs
- Validation pairs: ~50,000 sentence pairs
- Test pairs: ~3,000 sentence pairs
Limitations
- Trained specifically for Vietnamese to English translation
- Performance may vary on out-of-domain text
- Medical/technical domains may require fine-tuning
Citation
@misc{nlp-transformer-mt,
author = {MothMalone},
title = {Transformer Machine Translation Vi-En},
year = {2025},
publisher = {HuggingFace},
howpublished = {\url{https://huggingface.co/MothMalone}}
}
- Downloads last month
- 4