assignment4_ModernBertLarge_clinc
This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1646
- Accuracy: 0.9723
- F1: 0.9720
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 4
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 1.9174 | 0.4193 | 200 | 0.3720 | 0.9081 | 0.9075 |
| 0.2511 | 0.8386 | 400 | 0.2528 | 0.9484 | 0.9481 |
| 0.1067 | 1.2579 | 600 | 0.2138 | 0.9539 | 0.9532 |
| 0.0554 | 1.6771 | 800 | 0.1951 | 0.9581 | 0.9573 |
| 0.0488 | 2.0964 | 1000 | 0.1656 | 0.9694 | 0.9689 |
| 0.0163 | 2.5157 | 1200 | 0.1596 | 0.9726 | 0.9722 |
| 0.01 | 2.9350 | 1400 | 0.1666 | 0.9742 | 0.9739 |
| 0.0035 | 3.3543 | 1600 | 0.1614 | 0.9739 | 0.9736 |
| 0.0013 | 3.7736 | 1800 | 0.1646 | 0.9723 | 0.9720 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 2
Model tree for Maziger1/assignment4_ModernBertLarge_clinc
Base model
answerdotai/ModernBERT-large