Configuration Parsing Warning: Config file tokenizer_config.json cannot be fetched (too big)

ToolMaster-7B

ToolMaster is a framework that shifts tool learning from static imitation to a trial-and-execution paradigm, enabling Large Language Models (LLMs) to actively master tools. It was introduced in the paper Teaching LLMs to Learn Tool Trialing and Execution through Environment Interaction.

Introduction

Existing tool-use paradigms primarily rely on memorizing static solution paths during training, which limits the ability of LLMs to generalize to new or evolving tools. ToolMaster addresses this by training agents to:

  1. Trial Phase: Conduct autonomous tool trials to accumulate experiential knowledge.
  2. Execution Phase: Perform planning and solving while explicitly employing self-correction to rectify errors based on environmental feedback.

By leveraging Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) using Group Relative Policy Optimization (GRPO), ToolMaster empowers agents to dynamically adapt to unfamiliar tools, significantly enhancing generalization and robustness.

Resources

Model Details

This checkpoint is a fine-tuned version of Qwen2.5-7B-Instruct. It has been optimized for tool planning and invocation through the trial-and-execution framework.

Usage

For detailed instructions on environment setup, data preparation, and evaluation (on benchmarks like ToolHop, TMDB, and StableToolBench), please refer to the official GitHub repository.

Citation

If you find this work useful, please cite:

@article{gao2025teaching,
  title={Teaching LLMs to Learn Tool Trialing and Execution through Environment Interaction},
  author={Gao, Xingjie and others},
  journal={arXiv preprint arXiv:2601.12762},
  year={2025}
}
Downloads last month
14
Safetensors
Model size
333k params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Kfkcome/ToolMaster-7B

Base model

Qwen/Qwen2.5-7B
Finetuned
(2365)
this model
Quantizations
2 models

Paper for Kfkcome/ToolMaster-7B