Stream-DiffVSR: Low-Latency Streamable Video Super-Resolution via Auto-Regressive Diffusion

Stream-DiffVSR is a causally conditioned diffusion framework designed for efficient online Video Super-Resolution (VSR). It operates strictly on past frames to maintain low latency, making it suitable for real-time deployment.

[Paper] [Project Page] [GitHub]

Description

Diffusion-based VSR methods often struggle with latency due to multi-step denoising and reliance on future frames. Stream-DiffVSR addresses this with:

  • Causal Conditioning: Operates only on past frames for online processing.
  • Four-step Distilled Denoiser: Enables fast inference without sacrificing quality.
  • Auto-regressive Temporal Guidance (ARTG): Injects motion-aligned cues during denoising.
  • Lightweight Temporal Decoder: Enhances temporal coherence and fine details.

Stream-DiffVSR can process 720p frames in 0.328 seconds on an RTX 4090, achieving significant latency reductions compared to prior diffusion-based VSR methods.

Usage

Installation

git clone https://github.com/jamichss/Stream-DiffVSR.git
cd Stream-DiffVSR
conda env create -f requirements.yml
conda activate stream-diffvsr

Inference

You can run inference using the following command. The script will automatically fetch the necessary weights from this repository.

python inference.py \
    --model_id 'Jamichsu/Stream-DiffVSR' \
    --out_path 'YOUR_OUTPUT_PATH' \
    --in_path 'YOUR_INPUT_PATH' \
    --num_inference_steps 4

The expected file structure for the inference input data is as follows:

YOUR_INPUT_PATH/
├── seq1/
│   ├── frame_0001.png
│   ├── frame_0002.png
│   └── ...
├── seq2/
│   ├── frame_0001.png
│   ├── frame_0002.png
│   └── ...

For NVIDIA TensorRT acceleration:

python inference.py \
    --model_id 'Jamichsu/Stream-DiffVSR' \
    --out_path 'YOUR_OUTPUT_PATH' \
    --in_path 'YOUR_INPUT_PATH' \
    --num_inference_steps 4 \
    --enable_tensorrt \
    --image_height <YOUR_TARGET_HEIGHT> \
    --image_width <YOUR_TARGET_WIDTH>

Citation

If you find this work useful, please cite:

@article{shiu2025streamdiffvsr,
  title={Stream-DiffVSR: Low-Latency Streamable Video Super-Resolution via Auto-Regressive Diffusion},
  author={Shiu, Hau-Shiang and Lin, Chin-Yang and Wang, Zhixiang and Hsiao, Chi-Wei and Yu, Po-Fan and Chen, Yu-Chih and Liu, Yu-Lun},
  journal={arXiv preprint arXiv:2512.23709},
  year={2025}
}
Downloads last month
57
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support