MedQuAD LoRA r=4
Configuraci贸n
- Base:
mistralai/Mistral-7B-Instruct-v0.3 - LoRA r: 4
- M贸dulos: q_proj, k_proj, v_proj
- 4-bit NF4
- Early Stopping: patience=3
Entrenamiento
Training logs (manual, Epoch estimado):
| Step | Epoch | Training Loss | Validation Loss |
|---|---|---|---|
| 100 | 0.046 | 0.820900 | 0.792622 |
| 200 | 0.093 | 0.770500 | 0.764106 |
| 300 | 0.139 | 0.762600 | 0.754589 |
| 400 | 0.186 | 0.733300 | 0.741709 |
| 500 | 0.232 | 0.734900 | 0.735551 |
| 600 | 0.279 | 0.741500 | 0.731295 |
| 700 | 0.325 | 0.722700 | 0.710327 |
| 800 | 0.371 | 0.735200 | 0.703414 |
| 900 | 0.418 | 0.721500 | 0.693650 |
| 1000 | 0.464 | 0.697900 | 0.690272 |
| 1100 | 0.511 | 0.689100 | 0.684814 |
| 1200 | 0.557 | 0.662200 | 0.674680 |
| 1300 | 0.604 | 0.664400 | 0.677307 |
| 1400 | 0.650 | 0.663100 | 0.669781 |
| 1500 | 0.696 | 0.616000 | 0.665949 |
| 1600 | 0.743 | 0.622500 | 0.664927 |
| 1700 | 0.789 | 0.622200 | 0.658744 |
| 1800 | 0.836 | 0.630300 | 0.654155 |
| 1900 | 0.882 | 0.628300 | 0.656066 |
| 2000 | 0.929 | 0.612600 | 0.653236 |
| 2100 | 0.975 | 0.619600 | 0.647662 |
| 2200 | 1.021 | 0.605400 | 0.649643 |
| 2300 | 1.068 | 0.603700 | 0.646184 |
| 2400 | 1.114 | 0.600100 | 0.643537 |
| 2500 | 1.161 | 0.565200 | 0.642405 |
| 2600 | 1.207 | 0.594800 | 0.636302 |
| 2700 | 1.253 | 0.587300 | 0.630301 |
| 2800 | 1.300 | 0.598400 | 0.628895 |
| 2900 | 1.346 | 0.561300 | 0.630126 |
| 3000 | 1.393 | 0.538800 | 0.633145 |
| 3100 | 1.439 | 0.537100 | 0.632617 |
Uso
from peft import PeftModel
from transformers import AutoModelForCausalLM
base = AutoModelForCausalLM.from_pretrained('mistralai/Mistral-7B-Instruct-v0.3', load_in_4bit=True)
model = PeftModel.from_pretrained(base, 'CHF0101/medquad-lora-r4')
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
馃檵
Ask for provider support