AnonymousCS's picture
End of training
7e81f6b verified
---
library_name: transformers
license: mit
base_model: AnonymousCS/populism_xlmr_base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: populism_classifier_bsample_188
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# populism_classifier_bsample_188
This model is a fine-tuned version of [AnonymousCS/populism_xlmr_base](https://huggingface.co/AnonymousCS/populism_xlmr_base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7677
- Accuracy: 0.0625
- 1-f1: 0.1176
- 1-recall: 1.0
- 1-precision: 0.0625
- Balanced Acc: 0.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.7395 | 1.0 | 15 | 0.7633 | 0.0625 | 0.1176 | 1.0 | 0.0625 | 0.5 |
| 0.6978 | 2.0 | 30 | 0.7616 | 0.0625 | 0.1176 | 1.0 | 0.0625 | 0.5 |
| 0.7113 | 3.0 | 45 | 0.7629 | 0.0625 | 0.1176 | 1.0 | 0.0625 | 0.5 |
| 0.705 | 4.0 | 60 | 0.7651 | 0.0625 | 0.1176 | 1.0 | 0.0625 | 0.5 |
| 0.7479 | 5.0 | 75 | 0.7672 | 0.0625 | 0.1176 | 1.0 | 0.0625 | 0.5 |
| 0.6759 | 6.0 | 90 | 0.7664 | 0.0625 | 0.1176 | 1.0 | 0.0625 | 0.5 |
| 0.6576 | 7.0 | 105 | 0.7677 | 0.0625 | 0.1176 | 1.0 | 0.0625 | 0.5 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3