populism_classifier_bsample_022
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8914
- Accuracy: 0.7494
- 1-f1: 0.2273
- 1-recall: 0.9375
- 1-precision: 0.1293
- Balanced Acc: 0.8396
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|---|---|---|---|---|---|---|---|---|
| 0.1118 | 1.0 | 4 | 0.5015 | 0.8280 | 0.3000 | 0.9375 | 0.1786 | 0.8805 |
| 0.0728 | 2.0 | 8 | 0.8997 | 0.6757 | 0.1951 | 1.0 | 0.1081 | 0.8312 |
| 0.0605 | 3.0 | 12 | 0.4522 | 0.8256 | 0.2970 | 0.9375 | 0.1765 | 0.8792 |
| 0.0092 | 4.0 | 16 | 0.6763 | 0.7690 | 0.2419 | 0.9375 | 0.1389 | 0.8498 |
| 0.0549 | 5.0 | 20 | 0.8914 | 0.7494 | 0.2273 | 0.9375 | 0.1293 | 0.8396 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 8
Model tree for AnonymousCS/populism_classifier_bsample_022
Base model
google-bert/bert-base-multilingual-cased