AlIshaq commited on
Commit
bb31028
·
verified ·
1 Parent(s): 39aac4f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -374
README.md CHANGED
@@ -4,383 +4,11 @@ tags:
4
  - sentence-similarity
5
  - feature-extraction
6
  - generated_from_trainer
7
- - dataset_size:8100
8
  - loss:MultipleNegativesRankingLoss
9
- base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
- widget:
11
- - source_sentence: Apakah santri boleh keluar pondok saat dikunjungi?
12
- sentences:
13
- - Cukup menghubungi bagian keuangan atau humas PPS. Imam Syafi'i.
14
- - Keluar pondok hanya boleh dengan izin resmi dan keadaan darurat.
15
- - Ya, seperti menjadi ketua kelompok, mengatur antrian, dan memimpin doa.
16
- - source_sentence: Apakah santri boleh membawa HP?
17
- sentences:
18
- - HP tidak diperbolehkan dibawa ke lingkungan pesantren.
19
- - Ya, kurikulum disesuaikan dengan tingkat perkembangan santri.
20
- - Santri akan mendapatkan pendampingan psikologis dan konseling.
21
- - source_sentence: Apakah ada kegiatan kebersihan harian di TK?
22
- sentences:
23
- - Santri mendapat pembinaan khusus dan apresiasi.
24
- - Ya, setiap pagi santri melakukan piket kebersihan lingkungan sesuai jadwal.
25
- - Ya, kurikulum disesuaikan dengan tingkat perkembangan santri.
26
- - source_sentence: Apakah ada buku panduan bagi wali santri baru?
27
- sentences:
28
- - Wali harus mengajukan surat izin resmi dan mendapat persetujuan pengasuh.
29
- - Ekskul dapat diganti satu kali di tengah semester dengan izin wali kelas.
30
- - Ya, setiap wali mendapat buku panduan saat pendaftaran.
31
- - source_sentence: Apakah ekskul dibuka untuk santri baru?
32
- sentences:
33
- - Ya, santri harus menjaga ketenangan dan mengembalikan buku tepat waktu.
34
- - Ya, santri baru dapat langsung mendaftar ekskul di awal semester.
35
- - Ya, kurikulum terus dievaluasi dan disesuaikan dengan tantangan era modern.
36
  pipeline_tag: sentence-similarity
37
  library_name: sentence-transformers
38
  metrics:
39
  - pearson_cosine
40
  - spearman_cosine
41
- model-index:
42
- - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
43
- results:
44
- - task:
45
- type: semantic-similarity
46
- name: Semantic Similarity
47
- dataset:
48
- name: eval
49
- type: eval
50
- metrics:
51
- - type: pearson_cosine
52
- value: .nan
53
- name: Pearson Cosine
54
- - type: spearman_cosine
55
- value: .nan
56
- name: Spearman Cosine
57
- ---
58
-
59
- # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
60
-
61
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
62
-
63
- ## Model Details
64
-
65
- ### Model Description
66
- - **Model Type:** Sentence Transformer
67
- - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
68
- - **Maximum Sequence Length:** 128 tokens
69
- - **Output Dimensionality:** 384 dimensions
70
- - **Similarity Function:** Cosine Similarity
71
- <!-- - **Training Dataset:** Unknown -->
72
- <!-- - **Language:** Unknown -->
73
- <!-- - **License:** Unknown -->
74
-
75
- ### Model Sources
76
-
77
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
78
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
79
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
80
-
81
- ### Full Model Architecture
82
-
83
- ```
84
- SentenceTransformer(
85
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
86
- (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
87
- )
88
- ```
89
-
90
- ## Usage
91
-
92
- ### Direct Usage (Sentence Transformers)
93
-
94
- First install the Sentence Transformers library:
95
-
96
- ```bash
97
- pip install -U sentence-transformers
98
- ```
99
-
100
- Then you can load this model and run inference.
101
- ```python
102
- from sentence_transformers import SentenceTransformer
103
-
104
- # Download from the 🤗 Hub
105
- model = SentenceTransformer("sentence_transformers_model_id")
106
- # Run inference
107
- sentences = [
108
- 'Apakah ekskul dibuka untuk santri baru?',
109
- 'Ya, santri baru dapat langsung mendaftar ekskul di awal semester.',
110
- 'Ya, kurikulum terus dievaluasi dan disesuaikan dengan tantangan era modern.',
111
- ]
112
- embeddings = model.encode(sentences)
113
- print(embeddings.shape)
114
- # [3, 384]
115
-
116
- # Get the similarity scores for the embeddings
117
- similarities = model.similarity(embeddings, embeddings)
118
- print(similarities.shape)
119
- # [3, 3]
120
- ```
121
-
122
- <!--
123
- ### Direct Usage (Transformers)
124
-
125
- <details><summary>Click to see the direct usage in Transformers</summary>
126
-
127
- </details>
128
- -->
129
-
130
- <!--
131
- ### Downstream Usage (Sentence Transformers)
132
-
133
- You can finetune this model on your own dataset.
134
-
135
- <details><summary>Click to expand</summary>
136
-
137
- </details>
138
- -->
139
-
140
- <!--
141
- ### Out-of-Scope Use
142
-
143
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
144
- -->
145
-
146
- ## Evaluation
147
-
148
- ### Metrics
149
-
150
- #### Semantic Similarity
151
-
152
- * Dataset: `eval`
153
- * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
154
-
155
- | Metric | Value |
156
- |:--------------------|:--------|
157
- | pearson_cosine | nan |
158
- | **spearman_cosine** | **nan** |
159
-
160
- <!--
161
- ## Bias, Risks and Limitations
162
-
163
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
164
- -->
165
-
166
- <!--
167
- ### Recommendations
168
-
169
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
170
- -->
171
-
172
- ## Training Details
173
-
174
- ### Training Dataset
175
-
176
- #### Unnamed Dataset
177
-
178
- * Size: 8,100 training samples
179
- * Columns: <code>sentence_0</code> and <code>sentence_1</code>
180
- * Approximate statistics based on the first 1000 samples:
181
- | | sentence_0 | sentence_1 |
182
- |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
183
- | type | string | string |
184
- | details | <ul><li>min: 7 tokens</li><li>mean: 11.19 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 15.87 tokens</li><li>max: 42 tokens</li></ul> |
185
- * Samples:
186
- | sentence_0 | sentence_1 |
187
- |:------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
188
- | <code>Apakah kurikulum mencakup pendidikan karakter?</code> | <code>Ya, pembinaan karakter menjadi bagian utama kurikulum pesantren.</code> |
189
- | <code>Apakah lingkungan pondok ramah anak?</code> | <code>Ya, desain dan pengawasan mendukung kenyamanan dan keamanan santri.</code> |
190
- | <code>Apakah nilai adab berpengaruh pada kelulusan?</code> | <code>Sangat berpengaruh, nilai adab menjadi pertimbangan utama dalam penilaian akhir.</code> |
191
- * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
192
- ```json
193
- {
194
- "scale": 20.0,
195
- "similarity_fct": "cos_sim"
196
- }
197
- ```
198
-
199
- ### Training Hyperparameters
200
- #### Non-Default Hyperparameters
201
-
202
- - `eval_strategy`: steps
203
- - `per_device_train_batch_size`: 16
204
- - `per_device_eval_batch_size`: 16
205
- - `multi_dataset_batch_sampler`: round_robin
206
-
207
- #### All Hyperparameters
208
- <details><summary>Click to expand</summary>
209
-
210
- - `overwrite_output_dir`: False
211
- - `do_predict`: False
212
- - `eval_strategy`: steps
213
- - `prediction_loss_only`: True
214
- - `per_device_train_batch_size`: 16
215
- - `per_device_eval_batch_size`: 16
216
- - `per_gpu_train_batch_size`: None
217
- - `per_gpu_eval_batch_size`: None
218
- - `gradient_accumulation_steps`: 1
219
- - `eval_accumulation_steps`: None
220
- - `torch_empty_cache_steps`: None
221
- - `learning_rate`: 5e-05
222
- - `weight_decay`: 0.0
223
- - `adam_beta1`: 0.9
224
- - `adam_beta2`: 0.999
225
- - `adam_epsilon`: 1e-08
226
- - `max_grad_norm`: 1
227
- - `num_train_epochs`: 3
228
- - `max_steps`: -1
229
- - `lr_scheduler_type`: linear
230
- - `lr_scheduler_kwargs`: {}
231
- - `warmup_ratio`: 0.0
232
- - `warmup_steps`: 0
233
- - `log_level`: passive
234
- - `log_level_replica`: warning
235
- - `log_on_each_node`: True
236
- - `logging_nan_inf_filter`: True
237
- - `save_safetensors`: True
238
- - `save_on_each_node`: False
239
- - `save_only_model`: False
240
- - `restore_callback_states_from_checkpoint`: False
241
- - `no_cuda`: False
242
- - `use_cpu`: False
243
- - `use_mps_device`: False
244
- - `seed`: 42
245
- - `data_seed`: None
246
- - `jit_mode_eval`: False
247
- - `use_ipex`: False
248
- - `bf16`: False
249
- - `fp16`: False
250
- - `fp16_opt_level`: O1
251
- - `half_precision_backend`: auto
252
- - `bf16_full_eval`: False
253
- - `fp16_full_eval`: False
254
- - `tf32`: None
255
- - `local_rank`: 0
256
- - `ddp_backend`: None
257
- - `tpu_num_cores`: None
258
- - `tpu_metrics_debug`: False
259
- - `debug`: []
260
- - `dataloader_drop_last`: False
261
- - `dataloader_num_workers`: 0
262
- - `dataloader_prefetch_factor`: None
263
- - `past_index`: -1
264
- - `disable_tqdm`: False
265
- - `remove_unused_columns`: True
266
- - `label_names`: None
267
- - `load_best_model_at_end`: False
268
- - `ignore_data_skip`: False
269
- - `fsdp`: []
270
- - `fsdp_min_num_params`: 0
271
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
272
- - `fsdp_transformer_layer_cls_to_wrap`: None
273
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
274
- - `deepspeed`: None
275
- - `label_smoothing_factor`: 0.0
276
- - `optim`: adamw_torch
277
- - `optim_args`: None
278
- - `adafactor`: False
279
- - `group_by_length`: False
280
- - `length_column_name`: length
281
- - `ddp_find_unused_parameters`: None
282
- - `ddp_bucket_cap_mb`: None
283
- - `ddp_broadcast_buffers`: False
284
- - `dataloader_pin_memory`: True
285
- - `dataloader_persistent_workers`: False
286
- - `skip_memory_metrics`: True
287
- - `use_legacy_prediction_loop`: False
288
- - `push_to_hub`: False
289
- - `resume_from_checkpoint`: None
290
- - `hub_model_id`: None
291
- - `hub_strategy`: every_save
292
- - `hub_private_repo`: None
293
- - `hub_always_push`: False
294
- - `gradient_checkpointing`: False
295
- - `gradient_checkpointing_kwargs`: None
296
- - `include_inputs_for_metrics`: False
297
- - `include_for_metrics`: []
298
- - `eval_do_concat_batches`: True
299
- - `fp16_backend`: auto
300
- - `push_to_hub_model_id`: None
301
- - `push_to_hub_organization`: None
302
- - `mp_parameters`:
303
- - `auto_find_batch_size`: False
304
- - `full_determinism`: False
305
- - `torchdynamo`: None
306
- - `ray_scope`: last
307
- - `ddp_timeout`: 1800
308
- - `torch_compile`: False
309
- - `torch_compile_backend`: None
310
- - `torch_compile_mode`: None
311
- - `include_tokens_per_second`: False
312
- - `include_num_input_tokens_seen`: False
313
- - `neftune_noise_alpha`: None
314
- - `optim_target_modules`: None
315
- - `batch_eval_metrics`: False
316
- - `eval_on_start`: False
317
- - `use_liger_kernel`: False
318
- - `eval_use_gather_object`: False
319
- - `average_tokens_across_devices`: False
320
- - `prompts`: None
321
- - `batch_sampler`: batch_sampler
322
- - `multi_dataset_batch_sampler`: round_robin
323
-
324
- </details>
325
-
326
- ### Training Logs
327
- | Epoch | Step | eval_spearman_cosine |
328
- |:------:|:----:|:--------------------:|
329
- | 0.1972 | 100 | nan |
330
-
331
-
332
- ### Framework Versions
333
- - Python: 3.11.13
334
- - Sentence Transformers: 4.1.0
335
- - Transformers: 4.52.4
336
- - PyTorch: 2.6.0+cu124
337
- - Accelerate: 1.7.0
338
- - Datasets: 2.14.4
339
- - Tokenizers: 0.21.1
340
-
341
- ## Citation
342
-
343
- ### BibTeX
344
-
345
- #### Sentence Transformers
346
- ```bibtex
347
- @inproceedings{reimers-2019-sentence-bert,
348
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
349
- author = "Reimers, Nils and Gurevych, Iryna",
350
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
351
- month = "11",
352
- year = "2019",
353
- publisher = "Association for Computational Linguistics",
354
- url = "https://arxiv.org/abs/1908.10084",
355
- }
356
- ```
357
-
358
- #### MultipleNegativesRankingLoss
359
- ```bibtex
360
- @misc{henderson2017efficient,
361
- title={Efficient Natural Language Response Suggestion for Smart Reply},
362
- author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
363
- year={2017},
364
- eprint={1705.00652},
365
- archivePrefix={arXiv},
366
- primaryClass={cs.CL}
367
- }
368
- ```
369
-
370
- <!--
371
- ## Glossary
372
-
373
- *Clearly define terms in order to be accessible across audiences.*
374
- -->
375
-
376
- <!--
377
- ## Model Card Authors
378
-
379
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
380
- -->
381
-
382
- <!--
383
- ## Model Card Contact
384
-
385
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
386
- -->
 
4
  - sentence-similarity
5
  - feature-extraction
6
  - generated_from_trainer
7
+ - dataset_size:9000
8
  - loss:MultipleNegativesRankingLoss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  pipeline_tag: sentence-similarity
10
  library_name: sentence-transformers
11
  metrics:
12
  - pearson_cosine
13
  - spearman_cosine
14
+ ---