AlIshaq commited on
Commit
39aac4f
·
verified ·
1 Parent(s): 53f75e6

Upload 77 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +10 -0
  2. 1_Pooling/config.json +10 -0
  3. README.md +386 -3
  4. checkpoint-1000/1_Pooling/config.json +10 -0
  5. checkpoint-1000/README.md +396 -0
  6. checkpoint-1000/config.json +25 -0
  7. checkpoint-1000/config_sentence_transformers.json +10 -0
  8. checkpoint-1000/model.safetensors +3 -0
  9. checkpoint-1000/modules.json +14 -0
  10. checkpoint-1000/optimizer.pt +3 -0
  11. checkpoint-1000/rng_state.pth +3 -0
  12. checkpoint-1000/scheduler.pt +3 -0
  13. checkpoint-1000/sentence_bert_config.json +4 -0
  14. checkpoint-1000/special_tokens_map.json +51 -0
  15. checkpoint-1000/tokenizer.json +3 -0
  16. checkpoint-1000/tokenizer_config.json +65 -0
  17. checkpoint-1000/trainer_state.json +138 -0
  18. checkpoint-1000/training_args.bin +3 -0
  19. checkpoint-1000/unigram.json +3 -0
  20. checkpoint-1500/1_Pooling/config.json +10 -0
  21. checkpoint-1500/README.md +402 -0
  22. checkpoint-1500/config.json +25 -0
  23. checkpoint-1500/config_sentence_transformers.json +10 -0
  24. checkpoint-1500/model.safetensors +3 -0
  25. checkpoint-1500/modules.json +14 -0
  26. checkpoint-1500/optimizer.pt +3 -0
  27. checkpoint-1500/rng_state.pth +3 -0
  28. checkpoint-1500/scheduler.pt +3 -0
  29. checkpoint-1500/sentence_bert_config.json +4 -0
  30. checkpoint-1500/special_tokens_map.json +51 -0
  31. checkpoint-1500/tokenizer.json +3 -0
  32. checkpoint-1500/tokenizer_config.json +65 -0
  33. checkpoint-1500/trainer_state.json +190 -0
  34. checkpoint-1500/training_args.bin +3 -0
  35. checkpoint-1500/unigram.json +3 -0
  36. checkpoint-1521/1_Pooling/config.json +10 -0
  37. checkpoint-1521/README.md +402 -0
  38. checkpoint-1521/config.json +25 -0
  39. checkpoint-1521/config_sentence_transformers.json +10 -0
  40. checkpoint-1521/model.safetensors +3 -0
  41. checkpoint-1521/modules.json +14 -0
  42. checkpoint-1521/optimizer.pt +3 -0
  43. checkpoint-1521/rng_state.pth +3 -0
  44. checkpoint-1521/scheduler.pt +3 -0
  45. checkpoint-1521/sentence_bert_config.json +4 -0
  46. checkpoint-1521/special_tokens_map.json +51 -0
  47. checkpoint-1521/tokenizer.json +3 -0
  48. checkpoint-1521/tokenizer_config.json +65 -0
  49. checkpoint-1521/trainer_state.json +190 -0
  50. checkpoint-1521/training_args.bin +3 -0
.gitattributes CHANGED
@@ -33,3 +33,13 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-1000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-1000/unigram.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-1500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ checkpoint-1500/unigram.json filter=lfs diff=lfs merge=lfs -text
40
+ checkpoint-1521/tokenizer.json filter=lfs diff=lfs merge=lfs -text
41
+ checkpoint-1521/unigram.json filter=lfs diff=lfs merge=lfs -text
42
+ checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
43
+ checkpoint-500/unigram.json filter=lfs diff=lfs merge=lfs -text
44
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
45
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,386 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:8100
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: Apakah santri boleh keluar pondok saat dikunjungi?
12
+ sentences:
13
+ - Cukup menghubungi bagian keuangan atau humas PPS. Imam Syafi'i.
14
+ - Keluar pondok hanya boleh dengan izin resmi dan keadaan darurat.
15
+ - Ya, seperti menjadi ketua kelompok, mengatur antrian, dan memimpin doa.
16
+ - source_sentence: Apakah santri boleh membawa HP?
17
+ sentences:
18
+ - HP tidak diperbolehkan dibawa ke lingkungan pesantren.
19
+ - Ya, kurikulum disesuaikan dengan tingkat perkembangan santri.
20
+ - Santri akan mendapatkan pendampingan psikologis dan konseling.
21
+ - source_sentence: Apakah ada kegiatan kebersihan harian di TK?
22
+ sentences:
23
+ - Santri mendapat pembinaan khusus dan apresiasi.
24
+ - Ya, setiap pagi santri melakukan piket kebersihan lingkungan sesuai jadwal.
25
+ - Ya, kurikulum disesuaikan dengan tingkat perkembangan santri.
26
+ - source_sentence: Apakah ada buku panduan bagi wali santri baru?
27
+ sentences:
28
+ - Wali harus mengajukan surat izin resmi dan mendapat persetujuan pengasuh.
29
+ - Ekskul dapat diganti satu kali di tengah semester dengan izin wali kelas.
30
+ - Ya, setiap wali mendapat buku panduan saat pendaftaran.
31
+ - source_sentence: Apakah ekskul dibuka untuk santri baru?
32
+ sentences:
33
+ - Ya, santri harus menjaga ketenangan dan mengembalikan buku tepat waktu.
34
+ - Ya, santri baru dapat langsung mendaftar ekskul di awal semester.
35
+ - Ya, kurikulum terus dievaluasi dan disesuaikan dengan tantangan era modern.
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - pearson_cosine
40
+ - spearman_cosine
41
+ model-index:
42
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
43
+ results:
44
+ - task:
45
+ type: semantic-similarity
46
+ name: Semantic Similarity
47
+ dataset:
48
+ name: eval
49
+ type: eval
50
+ metrics:
51
+ - type: pearson_cosine
52
+ value: .nan
53
+ name: Pearson Cosine
54
+ - type: spearman_cosine
55
+ value: .nan
56
+ name: Spearman Cosine
57
+ ---
58
+
59
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
60
+
61
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
62
+
63
+ ## Model Details
64
+
65
+ ### Model Description
66
+ - **Model Type:** Sentence Transformer
67
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
68
+ - **Maximum Sequence Length:** 128 tokens
69
+ - **Output Dimensionality:** 384 dimensions
70
+ - **Similarity Function:** Cosine Similarity
71
+ <!-- - **Training Dataset:** Unknown -->
72
+ <!-- - **Language:** Unknown -->
73
+ <!-- - **License:** Unknown -->
74
+
75
+ ### Model Sources
76
+
77
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
78
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
79
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
80
+
81
+ ### Full Model Architecture
82
+
83
+ ```
84
+ SentenceTransformer(
85
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
86
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
87
+ )
88
+ ```
89
+
90
+ ## Usage
91
+
92
+ ### Direct Usage (Sentence Transformers)
93
+
94
+ First install the Sentence Transformers library:
95
+
96
+ ```bash
97
+ pip install -U sentence-transformers
98
+ ```
99
+
100
+ Then you can load this model and run inference.
101
+ ```python
102
+ from sentence_transformers import SentenceTransformer
103
+
104
+ # Download from the 🤗 Hub
105
+ model = SentenceTransformer("sentence_transformers_model_id")
106
+ # Run inference
107
+ sentences = [
108
+ 'Apakah ekskul dibuka untuk santri baru?',
109
+ 'Ya, santri baru dapat langsung mendaftar ekskul di awal semester.',
110
+ 'Ya, kurikulum terus dievaluasi dan disesuaikan dengan tantangan era modern.',
111
+ ]
112
+ embeddings = model.encode(sentences)
113
+ print(embeddings.shape)
114
+ # [3, 384]
115
+
116
+ # Get the similarity scores for the embeddings
117
+ similarities = model.similarity(embeddings, embeddings)
118
+ print(similarities.shape)
119
+ # [3, 3]
120
+ ```
121
+
122
+ <!--
123
+ ### Direct Usage (Transformers)
124
+
125
+ <details><summary>Click to see the direct usage in Transformers</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Downstream Usage (Sentence Transformers)
132
+
133
+ You can finetune this model on your own dataset.
134
+
135
+ <details><summary>Click to expand</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Out-of-Scope Use
142
+
143
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
144
+ -->
145
+
146
+ ## Evaluation
147
+
148
+ ### Metrics
149
+
150
+ #### Semantic Similarity
151
+
152
+ * Dataset: `eval`
153
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
154
+
155
+ | Metric | Value |
156
+ |:--------------------|:--------|
157
+ | pearson_cosine | nan |
158
+ | **spearman_cosine** | **nan** |
159
+
160
+ <!--
161
+ ## Bias, Risks and Limitations
162
+
163
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
164
+ -->
165
+
166
+ <!--
167
+ ### Recommendations
168
+
169
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
170
+ -->
171
+
172
+ ## Training Details
173
+
174
+ ### Training Dataset
175
+
176
+ #### Unnamed Dataset
177
+
178
+ * Size: 8,100 training samples
179
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
180
+ * Approximate statistics based on the first 1000 samples:
181
+ | | sentence_0 | sentence_1 |
182
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
183
+ | type | string | string |
184
+ | details | <ul><li>min: 7 tokens</li><li>mean: 11.19 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 15.87 tokens</li><li>max: 42 tokens</li></ul> |
185
+ * Samples:
186
+ | sentence_0 | sentence_1 |
187
+ |:------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
188
+ | <code>Apakah kurikulum mencakup pendidikan karakter?</code> | <code>Ya, pembinaan karakter menjadi bagian utama kurikulum pesantren.</code> |
189
+ | <code>Apakah lingkungan pondok ramah anak?</code> | <code>Ya, desain dan pengawasan mendukung kenyamanan dan keamanan santri.</code> |
190
+ | <code>Apakah nilai adab berpengaruh pada kelulusan?</code> | <code>Sangat berpengaruh, nilai adab menjadi pertimbangan utama dalam penilaian akhir.</code> |
191
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
192
+ ```json
193
+ {
194
+ "scale": 20.0,
195
+ "similarity_fct": "cos_sim"
196
+ }
197
+ ```
198
+
199
+ ### Training Hyperparameters
200
+ #### Non-Default Hyperparameters
201
+
202
+ - `eval_strategy`: steps
203
+ - `per_device_train_batch_size`: 16
204
+ - `per_device_eval_batch_size`: 16
205
+ - `multi_dataset_batch_sampler`: round_robin
206
+
207
+ #### All Hyperparameters
208
+ <details><summary>Click to expand</summary>
209
+
210
+ - `overwrite_output_dir`: False
211
+ - `do_predict`: False
212
+ - `eval_strategy`: steps
213
+ - `prediction_loss_only`: True
214
+ - `per_device_train_batch_size`: 16
215
+ - `per_device_eval_batch_size`: 16
216
+ - `per_gpu_train_batch_size`: None
217
+ - `per_gpu_eval_batch_size`: None
218
+ - `gradient_accumulation_steps`: 1
219
+ - `eval_accumulation_steps`: None
220
+ - `torch_empty_cache_steps`: None
221
+ - `learning_rate`: 5e-05
222
+ - `weight_decay`: 0.0
223
+ - `adam_beta1`: 0.9
224
+ - `adam_beta2`: 0.999
225
+ - `adam_epsilon`: 1e-08
226
+ - `max_grad_norm`: 1
227
+ - `num_train_epochs`: 3
228
+ - `max_steps`: -1
229
+ - `lr_scheduler_type`: linear
230
+ - `lr_scheduler_kwargs`: {}
231
+ - `warmup_ratio`: 0.0
232
+ - `warmup_steps`: 0
233
+ - `log_level`: passive
234
+ - `log_level_replica`: warning
235
+ - `log_on_each_node`: True
236
+ - `logging_nan_inf_filter`: True
237
+ - `save_safetensors`: True
238
+ - `save_on_each_node`: False
239
+ - `save_only_model`: False
240
+ - `restore_callback_states_from_checkpoint`: False
241
+ - `no_cuda`: False
242
+ - `use_cpu`: False
243
+ - `use_mps_device`: False
244
+ - `seed`: 42
245
+ - `data_seed`: None
246
+ - `jit_mode_eval`: False
247
+ - `use_ipex`: False
248
+ - `bf16`: False
249
+ - `fp16`: False
250
+ - `fp16_opt_level`: O1
251
+ - `half_precision_backend`: auto
252
+ - `bf16_full_eval`: False
253
+ - `fp16_full_eval`: False
254
+ - `tf32`: None
255
+ - `local_rank`: 0
256
+ - `ddp_backend`: None
257
+ - `tpu_num_cores`: None
258
+ - `tpu_metrics_debug`: False
259
+ - `debug`: []
260
+ - `dataloader_drop_last`: False
261
+ - `dataloader_num_workers`: 0
262
+ - `dataloader_prefetch_factor`: None
263
+ - `past_index`: -1
264
+ - `disable_tqdm`: False
265
+ - `remove_unused_columns`: True
266
+ - `label_names`: None
267
+ - `load_best_model_at_end`: False
268
+ - `ignore_data_skip`: False
269
+ - `fsdp`: []
270
+ - `fsdp_min_num_params`: 0
271
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
272
+ - `fsdp_transformer_layer_cls_to_wrap`: None
273
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
274
+ - `deepspeed`: None
275
+ - `label_smoothing_factor`: 0.0
276
+ - `optim`: adamw_torch
277
+ - `optim_args`: None
278
+ - `adafactor`: False
279
+ - `group_by_length`: False
280
+ - `length_column_name`: length
281
+ - `ddp_find_unused_parameters`: None
282
+ - `ddp_bucket_cap_mb`: None
283
+ - `ddp_broadcast_buffers`: False
284
+ - `dataloader_pin_memory`: True
285
+ - `dataloader_persistent_workers`: False
286
+ - `skip_memory_metrics`: True
287
+ - `use_legacy_prediction_loop`: False
288
+ - `push_to_hub`: False
289
+ - `resume_from_checkpoint`: None
290
+ - `hub_model_id`: None
291
+ - `hub_strategy`: every_save
292
+ - `hub_private_repo`: None
293
+ - `hub_always_push`: False
294
+ - `gradient_checkpointing`: False
295
+ - `gradient_checkpointing_kwargs`: None
296
+ - `include_inputs_for_metrics`: False
297
+ - `include_for_metrics`: []
298
+ - `eval_do_concat_batches`: True
299
+ - `fp16_backend`: auto
300
+ - `push_to_hub_model_id`: None
301
+ - `push_to_hub_organization`: None
302
+ - `mp_parameters`:
303
+ - `auto_find_batch_size`: False
304
+ - `full_determinism`: False
305
+ - `torchdynamo`: None
306
+ - `ray_scope`: last
307
+ - `ddp_timeout`: 1800
308
+ - `torch_compile`: False
309
+ - `torch_compile_backend`: None
310
+ - `torch_compile_mode`: None
311
+ - `include_tokens_per_second`: False
312
+ - `include_num_input_tokens_seen`: False
313
+ - `neftune_noise_alpha`: None
314
+ - `optim_target_modules`: None
315
+ - `batch_eval_metrics`: False
316
+ - `eval_on_start`: False
317
+ - `use_liger_kernel`: False
318
+ - `eval_use_gather_object`: False
319
+ - `average_tokens_across_devices`: False
320
+ - `prompts`: None
321
+ - `batch_sampler`: batch_sampler
322
+ - `multi_dataset_batch_sampler`: round_robin
323
+
324
+ </details>
325
+
326
+ ### Training Logs
327
+ | Epoch | Step | eval_spearman_cosine |
328
+ |:------:|:----:|:--------------------:|
329
+ | 0.1972 | 100 | nan |
330
+
331
+
332
+ ### Framework Versions
333
+ - Python: 3.11.13
334
+ - Sentence Transformers: 4.1.0
335
+ - Transformers: 4.52.4
336
+ - PyTorch: 2.6.0+cu124
337
+ - Accelerate: 1.7.0
338
+ - Datasets: 2.14.4
339
+ - Tokenizers: 0.21.1
340
+
341
+ ## Citation
342
+
343
+ ### BibTeX
344
+
345
+ #### Sentence Transformers
346
+ ```bibtex
347
+ @inproceedings{reimers-2019-sentence-bert,
348
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
349
+ author = "Reimers, Nils and Gurevych, Iryna",
350
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
351
+ month = "11",
352
+ year = "2019",
353
+ publisher = "Association for Computational Linguistics",
354
+ url = "https://arxiv.org/abs/1908.10084",
355
+ }
356
+ ```
357
+
358
+ #### MultipleNegativesRankingLoss
359
+ ```bibtex
360
+ @misc{henderson2017efficient,
361
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
362
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
363
+ year={2017},
364
+ eprint={1705.00652},
365
+ archivePrefix={arXiv},
366
+ primaryClass={cs.CL}
367
+ }
368
+ ```
369
+
370
+ <!--
371
+ ## Glossary
372
+
373
+ *Clearly define terms in order to be accessible across audiences.*
374
+ -->
375
+
376
+ <!--
377
+ ## Model Card Authors
378
+
379
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
380
+ -->
381
+
382
+ <!--
383
+ ## Model Card Contact
384
+
385
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
386
+ -->
checkpoint-1000/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-1000/README.md ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:8100
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: Apakah santri boleh keluar pondok saat dikunjungi?
12
+ sentences:
13
+ - Cukup menghubungi bagian keuangan atau humas PPS. Imam Syafi'i.
14
+ - Keluar pondok hanya boleh dengan izin resmi dan keadaan darurat.
15
+ - Ya, seperti menjadi ketua kelompok, mengatur antrian, dan memimpin doa.
16
+ - source_sentence: Apakah santri boleh membawa HP?
17
+ sentences:
18
+ - HP tidak diperbolehkan dibawa ke lingkungan pesantren.
19
+ - Ya, kurikulum disesuaikan dengan tingkat perkembangan santri.
20
+ - Santri akan mendapatkan pendampingan psikologis dan konseling.
21
+ - source_sentence: Apakah ada kegiatan kebersihan harian di TK?
22
+ sentences:
23
+ - Santri mendapat pembinaan khusus dan apresiasi.
24
+ - Ya, setiap pagi santri melakukan piket kebersihan lingkungan sesuai jadwal.
25
+ - Ya, kurikulum disesuaikan dengan tingkat perkembangan santri.
26
+ - source_sentence: Apakah ada buku panduan bagi wali santri baru?
27
+ sentences:
28
+ - Wali harus mengajukan surat izin resmi dan mendapat persetujuan pengasuh.
29
+ - Ekskul dapat diganti satu kali di tengah semester dengan izin wali kelas.
30
+ - Ya, setiap wali mendapat buku panduan saat pendaftaran.
31
+ - source_sentence: Apakah ekskul dibuka untuk santri baru?
32
+ sentences:
33
+ - Ya, santri harus menjaga ketenangan dan mengembalikan buku tepat waktu.
34
+ - Ya, santri baru dapat langsung mendaftar ekskul di awal semester.
35
+ - Ya, kurikulum terus dievaluasi dan disesuaikan dengan tantangan era modern.
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - pearson_cosine
40
+ - spearman_cosine
41
+ model-index:
42
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
43
+ results:
44
+ - task:
45
+ type: semantic-similarity
46
+ name: Semantic Similarity
47
+ dataset:
48
+ name: eval
49
+ type: eval
50
+ metrics:
51
+ - type: pearson_cosine
52
+ value: .nan
53
+ name: Pearson Cosine
54
+ - type: spearman_cosine
55
+ value: .nan
56
+ name: Spearman Cosine
57
+ ---
58
+
59
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
60
+
61
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
62
+
63
+ ## Model Details
64
+
65
+ ### Model Description
66
+ - **Model Type:** Sentence Transformer
67
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
68
+ - **Maximum Sequence Length:** 128 tokens
69
+ - **Output Dimensionality:** 384 dimensions
70
+ - **Similarity Function:** Cosine Similarity
71
+ <!-- - **Training Dataset:** Unknown -->
72
+ <!-- - **Language:** Unknown -->
73
+ <!-- - **License:** Unknown -->
74
+
75
+ ### Model Sources
76
+
77
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
78
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
79
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
80
+
81
+ ### Full Model Architecture
82
+
83
+ ```
84
+ SentenceTransformer(
85
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
86
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
87
+ )
88
+ ```
89
+
90
+ ## Usage
91
+
92
+ ### Direct Usage (Sentence Transformers)
93
+
94
+ First install the Sentence Transformers library:
95
+
96
+ ```bash
97
+ pip install -U sentence-transformers
98
+ ```
99
+
100
+ Then you can load this model and run inference.
101
+ ```python
102
+ from sentence_transformers import SentenceTransformer
103
+
104
+ # Download from the 🤗 Hub
105
+ model = SentenceTransformer("sentence_transformers_model_id")
106
+ # Run inference
107
+ sentences = [
108
+ 'Apakah ekskul dibuka untuk santri baru?',
109
+ 'Ya, santri baru dapat langsung mendaftar ekskul di awal semester.',
110
+ 'Ya, kurikulum terus dievaluasi dan disesuaikan dengan tantangan era modern.',
111
+ ]
112
+ embeddings = model.encode(sentences)
113
+ print(embeddings.shape)
114
+ # [3, 384]
115
+
116
+ # Get the similarity scores for the embeddings
117
+ similarities = model.similarity(embeddings, embeddings)
118
+ print(similarities.shape)
119
+ # [3, 3]
120
+ ```
121
+
122
+ <!--
123
+ ### Direct Usage (Transformers)
124
+
125
+ <details><summary>Click to see the direct usage in Transformers</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Downstream Usage (Sentence Transformers)
132
+
133
+ You can finetune this model on your own dataset.
134
+
135
+ <details><summary>Click to expand</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Out-of-Scope Use
142
+
143
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
144
+ -->
145
+
146
+ ## Evaluation
147
+
148
+ ### Metrics
149
+
150
+ #### Semantic Similarity
151
+
152
+ * Dataset: `eval`
153
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
154
+
155
+ | Metric | Value |
156
+ |:--------------------|:--------|
157
+ | pearson_cosine | nan |
158
+ | **spearman_cosine** | **nan** |
159
+
160
+ <!--
161
+ ## Bias, Risks and Limitations
162
+
163
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
164
+ -->
165
+
166
+ <!--
167
+ ### Recommendations
168
+
169
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
170
+ -->
171
+
172
+ ## Training Details
173
+
174
+ ### Training Dataset
175
+
176
+ #### Unnamed Dataset
177
+
178
+ * Size: 8,100 training samples
179
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
180
+ * Approximate statistics based on the first 1000 samples:
181
+ | | sentence_0 | sentence_1 |
182
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
183
+ | type | string | string |
184
+ | details | <ul><li>min: 7 tokens</li><li>mean: 11.19 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 15.87 tokens</li><li>max: 42 tokens</li></ul> |
185
+ * Samples:
186
+ | sentence_0 | sentence_1 |
187
+ |:------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
188
+ | <code>Apakah kurikulum mencakup pendidikan karakter?</code> | <code>Ya, pembinaan karakter menjadi bagian utama kurikulum pesantren.</code> |
189
+ | <code>Apakah lingkungan pondok ramah anak?</code> | <code>Ya, desain dan pengawasan mendukung kenyamanan dan keamanan santri.</code> |
190
+ | <code>Apakah nilai adab berpengaruh pada kelulusan?</code> | <code>Sangat berpengaruh, nilai adab menjadi pertimbangan utama dalam penilaian akhir.</code> |
191
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
192
+ ```json
193
+ {
194
+ "scale": 20.0,
195
+ "similarity_fct": "cos_sim"
196
+ }
197
+ ```
198
+
199
+ ### Training Hyperparameters
200
+ #### Non-Default Hyperparameters
201
+
202
+ - `eval_strategy`: steps
203
+ - `per_device_train_batch_size`: 16
204
+ - `per_device_eval_batch_size`: 16
205
+ - `multi_dataset_batch_sampler`: round_robin
206
+
207
+ #### All Hyperparameters
208
+ <details><summary>Click to expand</summary>
209
+
210
+ - `overwrite_output_dir`: False
211
+ - `do_predict`: False
212
+ - `eval_strategy`: steps
213
+ - `prediction_loss_only`: True
214
+ - `per_device_train_batch_size`: 16
215
+ - `per_device_eval_batch_size`: 16
216
+ - `per_gpu_train_batch_size`: None
217
+ - `per_gpu_eval_batch_size`: None
218
+ - `gradient_accumulation_steps`: 1
219
+ - `eval_accumulation_steps`: None
220
+ - `torch_empty_cache_steps`: None
221
+ - `learning_rate`: 5e-05
222
+ - `weight_decay`: 0.0
223
+ - `adam_beta1`: 0.9
224
+ - `adam_beta2`: 0.999
225
+ - `adam_epsilon`: 1e-08
226
+ - `max_grad_norm`: 1
227
+ - `num_train_epochs`: 3
228
+ - `max_steps`: -1
229
+ - `lr_scheduler_type`: linear
230
+ - `lr_scheduler_kwargs`: {}
231
+ - `warmup_ratio`: 0.0
232
+ - `warmup_steps`: 0
233
+ - `log_level`: passive
234
+ - `log_level_replica`: warning
235
+ - `log_on_each_node`: True
236
+ - `logging_nan_inf_filter`: True
237
+ - `save_safetensors`: True
238
+ - `save_on_each_node`: False
239
+ - `save_only_model`: False
240
+ - `restore_callback_states_from_checkpoint`: False
241
+ - `no_cuda`: False
242
+ - `use_cpu`: False
243
+ - `use_mps_device`: False
244
+ - `seed`: 42
245
+ - `data_seed`: None
246
+ - `jit_mode_eval`: False
247
+ - `use_ipex`: False
248
+ - `bf16`: False
249
+ - `fp16`: False
250
+ - `fp16_opt_level`: O1
251
+ - `half_precision_backend`: auto
252
+ - `bf16_full_eval`: False
253
+ - `fp16_full_eval`: False
254
+ - `tf32`: None
255
+ - `local_rank`: 0
256
+ - `ddp_backend`: None
257
+ - `tpu_num_cores`: None
258
+ - `tpu_metrics_debug`: False
259
+ - `debug`: []
260
+ - `dataloader_drop_last`: False
261
+ - `dataloader_num_workers`: 0
262
+ - `dataloader_prefetch_factor`: None
263
+ - `past_index`: -1
264
+ - `disable_tqdm`: False
265
+ - `remove_unused_columns`: True
266
+ - `label_names`: None
267
+ - `load_best_model_at_end`: False
268
+ - `ignore_data_skip`: False
269
+ - `fsdp`: []
270
+ - `fsdp_min_num_params`: 0
271
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
272
+ - `fsdp_transformer_layer_cls_to_wrap`: None
273
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
274
+ - `deepspeed`: None
275
+ - `label_smoothing_factor`: 0.0
276
+ - `optim`: adamw_torch
277
+ - `optim_args`: None
278
+ - `adafactor`: False
279
+ - `group_by_length`: False
280
+ - `length_column_name`: length
281
+ - `ddp_find_unused_parameters`: None
282
+ - `ddp_bucket_cap_mb`: None
283
+ - `ddp_broadcast_buffers`: False
284
+ - `dataloader_pin_memory`: True
285
+ - `dataloader_persistent_workers`: False
286
+ - `skip_memory_metrics`: True
287
+ - `use_legacy_prediction_loop`: False
288
+ - `push_to_hub`: False
289
+ - `resume_from_checkpoint`: None
290
+ - `hub_model_id`: None
291
+ - `hub_strategy`: every_save
292
+ - `hub_private_repo`: None
293
+ - `hub_always_push`: False
294
+ - `gradient_checkpointing`: False
295
+ - `gradient_checkpointing_kwargs`: None
296
+ - `include_inputs_for_metrics`: False
297
+ - `include_for_metrics`: []
298
+ - `eval_do_concat_batches`: True
299
+ - `fp16_backend`: auto
300
+ - `push_to_hub_model_id`: None
301
+ - `push_to_hub_organization`: None
302
+ - `mp_parameters`:
303
+ - `auto_find_batch_size`: False
304
+ - `full_determinism`: False
305
+ - `torchdynamo`: None
306
+ - `ray_scope`: last
307
+ - `ddp_timeout`: 1800
308
+ - `torch_compile`: False
309
+ - `torch_compile_backend`: None
310
+ - `torch_compile_mode`: None
311
+ - `include_tokens_per_second`: False
312
+ - `include_num_input_tokens_seen`: False
313
+ - `neftune_noise_alpha`: None
314
+ - `optim_target_modules`: None
315
+ - `batch_eval_metrics`: False
316
+ - `eval_on_start`: False
317
+ - `use_liger_kernel`: False
318
+ - `eval_use_gather_object`: False
319
+ - `average_tokens_across_devices`: False
320
+ - `prompts`: None
321
+ - `batch_sampler`: batch_sampler
322
+ - `multi_dataset_batch_sampler`: round_robin
323
+
324
+ </details>
325
+
326
+ ### Training Logs
327
+ | Epoch | Step | Training Loss | eval_spearman_cosine |
328
+ |:------:|:----:|:-------------:|:--------------------:|
329
+ | 0.1972 | 100 | - | nan |
330
+ | 0.3945 | 200 | - | nan |
331
+ | 0.5917 | 300 | - | nan |
332
+ | 0.7890 | 400 | - | nan |
333
+ | 0.9862 | 500 | 0.28 | nan |
334
+ | 1.0 | 507 | - | nan |
335
+ | 1.1834 | 600 | - | nan |
336
+ | 1.3807 | 700 | - | nan |
337
+ | 1.5779 | 800 | - | nan |
338
+ | 1.7751 | 900 | - | nan |
339
+ | 1.9724 | 1000 | 0.0393 | nan |
340
+
341
+
342
+ ### Framework Versions
343
+ - Python: 3.11.13
344
+ - Sentence Transformers: 4.1.0
345
+ - Transformers: 4.52.4
346
+ - PyTorch: 2.6.0+cu124
347
+ - Accelerate: 1.7.0
348
+ - Datasets: 2.14.4
349
+ - Tokenizers: 0.21.1
350
+
351
+ ## Citation
352
+
353
+ ### BibTeX
354
+
355
+ #### Sentence Transformers
356
+ ```bibtex
357
+ @inproceedings{reimers-2019-sentence-bert,
358
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
359
+ author = "Reimers, Nils and Gurevych, Iryna",
360
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
361
+ month = "11",
362
+ year = "2019",
363
+ publisher = "Association for Computational Linguistics",
364
+ url = "https://arxiv.org/abs/1908.10084",
365
+ }
366
+ ```
367
+
368
+ #### MultipleNegativesRankingLoss
369
+ ```bibtex
370
+ @misc{henderson2017efficient,
371
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
372
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
373
+ year={2017},
374
+ eprint={1705.00652},
375
+ archivePrefix={arXiv},
376
+ primaryClass={cs.CL}
377
+ }
378
+ ```
379
+
380
+ <!--
381
+ ## Glossary
382
+
383
+ *Clearly define terms in order to be accessible across audiences.*
384
+ -->
385
+
386
+ <!--
387
+ ## Model Card Authors
388
+
389
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
390
+ -->
391
+
392
+ <!--
393
+ ## Model Card Contact
394
+
395
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
396
+ -->
checkpoint-1000/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.52.4",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
checkpoint-1000/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.4",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-1000/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8aed365b353fe1a54943d41c6a59bcfaee3f3501107ca9531e092c11ab366a1
3
+ size 470637416
checkpoint-1000/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee6cff9449516512dcb2d88111e071dd61e9b7a1213709ef6775fbfe5fb29747
3
+ size 940212218
checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75e60ec7c6daffa2345890216a615b934b4e3c644297c631caadc8f76c5bdf44
3
+ size 14244
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e973e9591cee2efb2deae3b216d2c5736cc6ba56a19a94afca78b909c125c023
3
+ size 1064
checkpoint-1000/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
checkpoint-1000/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-1000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
checkpoint-1000/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.972386587771203,
6
+ "eval_steps": 100,
7
+ "global_step": 1000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.19723865877712032,
14
+ "eval_pearson_cosine": NaN,
15
+ "eval_runtime": 1.2181,
16
+ "eval_samples_per_second": 0.0,
17
+ "eval_spearman_cosine": NaN,
18
+ "eval_steps_per_second": 0.0,
19
+ "step": 100
20
+ },
21
+ {
22
+ "epoch": 0.39447731755424065,
23
+ "eval_pearson_cosine": NaN,
24
+ "eval_runtime": 1.5897,
25
+ "eval_samples_per_second": 0.0,
26
+ "eval_spearman_cosine": NaN,
27
+ "eval_steps_per_second": 0.0,
28
+ "step": 200
29
+ },
30
+ {
31
+ "epoch": 0.591715976331361,
32
+ "eval_pearson_cosine": NaN,
33
+ "eval_runtime": 2.847,
34
+ "eval_samples_per_second": 0.0,
35
+ "eval_spearman_cosine": NaN,
36
+ "eval_steps_per_second": 0.0,
37
+ "step": 300
38
+ },
39
+ {
40
+ "epoch": 0.7889546351084813,
41
+ "eval_pearson_cosine": NaN,
42
+ "eval_runtime": 2.166,
43
+ "eval_samples_per_second": 0.0,
44
+ "eval_spearman_cosine": NaN,
45
+ "eval_steps_per_second": 0.0,
46
+ "step": 400
47
+ },
48
+ {
49
+ "epoch": 0.9861932938856016,
50
+ "grad_norm": 8.998483657836914,
51
+ "learning_rate": 1.4372355430183358e-05,
52
+ "loss": 0.28,
53
+ "step": 500
54
+ },
55
+ {
56
+ "epoch": 0.9861932938856016,
57
+ "eval_pearson_cosine": NaN,
58
+ "eval_runtime": 1.2219,
59
+ "eval_samples_per_second": 0.0,
60
+ "eval_spearman_cosine": NaN,
61
+ "eval_steps_per_second": 0.0,
62
+ "step": 500
63
+ },
64
+ {
65
+ "epoch": 1.183431952662722,
66
+ "eval_pearson_cosine": NaN,
67
+ "eval_runtime": 3.4138,
68
+ "eval_samples_per_second": 0.0,
69
+ "eval_spearman_cosine": NaN,
70
+ "eval_steps_per_second": 0.0,
71
+ "step": 600
72
+ },
73
+ {
74
+ "epoch": 1.3806706114398422,
75
+ "eval_pearson_cosine": NaN,
76
+ "eval_runtime": 1.3764,
77
+ "eval_samples_per_second": 0.0,
78
+ "eval_spearman_cosine": NaN,
79
+ "eval_steps_per_second": 0.0,
80
+ "step": 700
81
+ },
82
+ {
83
+ "epoch": 1.5779092702169626,
84
+ "eval_pearson_cosine": NaN,
85
+ "eval_runtime": 1.2387,
86
+ "eval_samples_per_second": 0.0,
87
+ "eval_spearman_cosine": NaN,
88
+ "eval_steps_per_second": 0.0,
89
+ "step": 800
90
+ },
91
+ {
92
+ "epoch": 1.7751479289940828,
93
+ "eval_pearson_cosine": NaN,
94
+ "eval_runtime": 1.2026,
95
+ "eval_samples_per_second": 0.0,
96
+ "eval_spearman_cosine": NaN,
97
+ "eval_steps_per_second": 0.0,
98
+ "step": 900
99
+ },
100
+ {
101
+ "epoch": 1.972386587771203,
102
+ "grad_norm": 0.12859900295734406,
103
+ "learning_rate": 7.320169252468266e-06,
104
+ "loss": 0.0393,
105
+ "step": 1000
106
+ },
107
+ {
108
+ "epoch": 1.972386587771203,
109
+ "eval_pearson_cosine": NaN,
110
+ "eval_runtime": 4.1539,
111
+ "eval_samples_per_second": 0.0,
112
+ "eval_spearman_cosine": NaN,
113
+ "eval_steps_per_second": 0.0,
114
+ "step": 1000
115
+ }
116
+ ],
117
+ "logging_steps": 500,
118
+ "max_steps": 1521,
119
+ "num_input_tokens_seen": 0,
120
+ "num_train_epochs": 3,
121
+ "save_steps": 500,
122
+ "stateful_callbacks": {
123
+ "TrainerControl": {
124
+ "args": {
125
+ "should_epoch_stop": false,
126
+ "should_evaluate": false,
127
+ "should_log": false,
128
+ "should_save": true,
129
+ "should_training_stop": false
130
+ },
131
+ "attributes": {}
132
+ }
133
+ },
134
+ "total_flos": 0.0,
135
+ "train_batch_size": 16,
136
+ "trial_name": null,
137
+ "trial_params": null
138
+ }
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6b0c772261a311993bb357660901823f0e8111b9d4198a0bb2d995ed7daee06
3
+ size 5496
checkpoint-1000/unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260
checkpoint-1500/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-1500/README.md ADDED
@@ -0,0 +1,402 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:8100
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: Apakah santri boleh keluar pondok saat dikunjungi?
12
+ sentences:
13
+ - Cukup menghubungi bagian keuangan atau humas PPS. Imam Syafi'i.
14
+ - Keluar pondok hanya boleh dengan izin resmi dan keadaan darurat.
15
+ - Ya, seperti menjadi ketua kelompok, mengatur antrian, dan memimpin doa.
16
+ - source_sentence: Apakah santri boleh membawa HP?
17
+ sentences:
18
+ - HP tidak diperbolehkan dibawa ke lingkungan pesantren.
19
+ - Ya, kurikulum disesuaikan dengan tingkat perkembangan santri.
20
+ - Santri akan mendapatkan pendampingan psikologis dan konseling.
21
+ - source_sentence: Apakah ada kegiatan kebersihan harian di TK?
22
+ sentences:
23
+ - Santri mendapat pembinaan khusus dan apresiasi.
24
+ - Ya, setiap pagi santri melakukan piket kebersihan lingkungan sesuai jadwal.
25
+ - Ya, kurikulum disesuaikan dengan tingkat perkembangan santri.
26
+ - source_sentence: Apakah ada buku panduan bagi wali santri baru?
27
+ sentences:
28
+ - Wali harus mengajukan surat izin resmi dan mendapat persetujuan pengasuh.
29
+ - Ekskul dapat diganti satu kali di tengah semester dengan izin wali kelas.
30
+ - Ya, setiap wali mendapat buku panduan saat pendaftaran.
31
+ - source_sentence: Apakah ekskul dibuka untuk santri baru?
32
+ sentences:
33
+ - Ya, santri harus menjaga ketenangan dan mengembalikan buku tepat waktu.
34
+ - Ya, santri baru dapat langsung mendaftar ekskul di awal semester.
35
+ - Ya, kurikulum terus dievaluasi dan disesuaikan dengan tantangan era modern.
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - pearson_cosine
40
+ - spearman_cosine
41
+ model-index:
42
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
43
+ results:
44
+ - task:
45
+ type: semantic-similarity
46
+ name: Semantic Similarity
47
+ dataset:
48
+ name: eval
49
+ type: eval
50
+ metrics:
51
+ - type: pearson_cosine
52
+ value: .nan
53
+ name: Pearson Cosine
54
+ - type: spearman_cosine
55
+ value: .nan
56
+ name: Spearman Cosine
57
+ ---
58
+
59
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
60
+
61
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
62
+
63
+ ## Model Details
64
+
65
+ ### Model Description
66
+ - **Model Type:** Sentence Transformer
67
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
68
+ - **Maximum Sequence Length:** 128 tokens
69
+ - **Output Dimensionality:** 384 dimensions
70
+ - **Similarity Function:** Cosine Similarity
71
+ <!-- - **Training Dataset:** Unknown -->
72
+ <!-- - **Language:** Unknown -->
73
+ <!-- - **License:** Unknown -->
74
+
75
+ ### Model Sources
76
+
77
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
78
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
79
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
80
+
81
+ ### Full Model Architecture
82
+
83
+ ```
84
+ SentenceTransformer(
85
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
86
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
87
+ )
88
+ ```
89
+
90
+ ## Usage
91
+
92
+ ### Direct Usage (Sentence Transformers)
93
+
94
+ First install the Sentence Transformers library:
95
+
96
+ ```bash
97
+ pip install -U sentence-transformers
98
+ ```
99
+
100
+ Then you can load this model and run inference.
101
+ ```python
102
+ from sentence_transformers import SentenceTransformer
103
+
104
+ # Download from the 🤗 Hub
105
+ model = SentenceTransformer("sentence_transformers_model_id")
106
+ # Run inference
107
+ sentences = [
108
+ 'Apakah ekskul dibuka untuk santri baru?',
109
+ 'Ya, santri baru dapat langsung mendaftar ekskul di awal semester.',
110
+ 'Ya, kurikulum terus dievaluasi dan disesuaikan dengan tantangan era modern.',
111
+ ]
112
+ embeddings = model.encode(sentences)
113
+ print(embeddings.shape)
114
+ # [3, 384]
115
+
116
+ # Get the similarity scores for the embeddings
117
+ similarities = model.similarity(embeddings, embeddings)
118
+ print(similarities.shape)
119
+ # [3, 3]
120
+ ```
121
+
122
+ <!--
123
+ ### Direct Usage (Transformers)
124
+
125
+ <details><summary>Click to see the direct usage in Transformers</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Downstream Usage (Sentence Transformers)
132
+
133
+ You can finetune this model on your own dataset.
134
+
135
+ <details><summary>Click to expand</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Out-of-Scope Use
142
+
143
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
144
+ -->
145
+
146
+ ## Evaluation
147
+
148
+ ### Metrics
149
+
150
+ #### Semantic Similarity
151
+
152
+ * Dataset: `eval`
153
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
154
+
155
+ | Metric | Value |
156
+ |:--------------------|:--------|
157
+ | pearson_cosine | nan |
158
+ | **spearman_cosine** | **nan** |
159
+
160
+ <!--
161
+ ## Bias, Risks and Limitations
162
+
163
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
164
+ -->
165
+
166
+ <!--
167
+ ### Recommendations
168
+
169
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
170
+ -->
171
+
172
+ ## Training Details
173
+
174
+ ### Training Dataset
175
+
176
+ #### Unnamed Dataset
177
+
178
+ * Size: 8,100 training samples
179
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
180
+ * Approximate statistics based on the first 1000 samples:
181
+ | | sentence_0 | sentence_1 |
182
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
183
+ | type | string | string |
184
+ | details | <ul><li>min: 7 tokens</li><li>mean: 11.19 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 15.87 tokens</li><li>max: 42 tokens</li></ul> |
185
+ * Samples:
186
+ | sentence_0 | sentence_1 |
187
+ |:------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
188
+ | <code>Apakah kurikulum mencakup pendidikan karakter?</code> | <code>Ya, pembinaan karakter menjadi bagian utama kurikulum pesantren.</code> |
189
+ | <code>Apakah lingkungan pondok ramah anak?</code> | <code>Ya, desain dan pengawasan mendukung kenyamanan dan keamanan santri.</code> |
190
+ | <code>Apakah nilai adab berpengaruh pada kelulusan?</code> | <code>Sangat berpengaruh, nilai adab menjadi pertimbangan utama dalam penilaian akhir.</code> |
191
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
192
+ ```json
193
+ {
194
+ "scale": 20.0,
195
+ "similarity_fct": "cos_sim"
196
+ }
197
+ ```
198
+
199
+ ### Training Hyperparameters
200
+ #### Non-Default Hyperparameters
201
+
202
+ - `eval_strategy`: steps
203
+ - `per_device_train_batch_size`: 16
204
+ - `per_device_eval_batch_size`: 16
205
+ - `multi_dataset_batch_sampler`: round_robin
206
+
207
+ #### All Hyperparameters
208
+ <details><summary>Click to expand</summary>
209
+
210
+ - `overwrite_output_dir`: False
211
+ - `do_predict`: False
212
+ - `eval_strategy`: steps
213
+ - `prediction_loss_only`: True
214
+ - `per_device_train_batch_size`: 16
215
+ - `per_device_eval_batch_size`: 16
216
+ - `per_gpu_train_batch_size`: None
217
+ - `per_gpu_eval_batch_size`: None
218
+ - `gradient_accumulation_steps`: 1
219
+ - `eval_accumulation_steps`: None
220
+ - `torch_empty_cache_steps`: None
221
+ - `learning_rate`: 5e-05
222
+ - `weight_decay`: 0.0
223
+ - `adam_beta1`: 0.9
224
+ - `adam_beta2`: 0.999
225
+ - `adam_epsilon`: 1e-08
226
+ - `max_grad_norm`: 1
227
+ - `num_train_epochs`: 3
228
+ - `max_steps`: -1
229
+ - `lr_scheduler_type`: linear
230
+ - `lr_scheduler_kwargs`: {}
231
+ - `warmup_ratio`: 0.0
232
+ - `warmup_steps`: 0
233
+ - `log_level`: passive
234
+ - `log_level_replica`: warning
235
+ - `log_on_each_node`: True
236
+ - `logging_nan_inf_filter`: True
237
+ - `save_safetensors`: True
238
+ - `save_on_each_node`: False
239
+ - `save_only_model`: False
240
+ - `restore_callback_states_from_checkpoint`: False
241
+ - `no_cuda`: False
242
+ - `use_cpu`: False
243
+ - `use_mps_device`: False
244
+ - `seed`: 42
245
+ - `data_seed`: None
246
+ - `jit_mode_eval`: False
247
+ - `use_ipex`: False
248
+ - `bf16`: False
249
+ - `fp16`: False
250
+ - `fp16_opt_level`: O1
251
+ - `half_precision_backend`: auto
252
+ - `bf16_full_eval`: False
253
+ - `fp16_full_eval`: False
254
+ - `tf32`: None
255
+ - `local_rank`: 0
256
+ - `ddp_backend`: None
257
+ - `tpu_num_cores`: None
258
+ - `tpu_metrics_debug`: False
259
+ - `debug`: []
260
+ - `dataloader_drop_last`: False
261
+ - `dataloader_num_workers`: 0
262
+ - `dataloader_prefetch_factor`: None
263
+ - `past_index`: -1
264
+ - `disable_tqdm`: False
265
+ - `remove_unused_columns`: True
266
+ - `label_names`: None
267
+ - `load_best_model_at_end`: False
268
+ - `ignore_data_skip`: False
269
+ - `fsdp`: []
270
+ - `fsdp_min_num_params`: 0
271
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
272
+ - `fsdp_transformer_layer_cls_to_wrap`: None
273
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
274
+ - `deepspeed`: None
275
+ - `label_smoothing_factor`: 0.0
276
+ - `optim`: adamw_torch
277
+ - `optim_args`: None
278
+ - `adafactor`: False
279
+ - `group_by_length`: False
280
+ - `length_column_name`: length
281
+ - `ddp_find_unused_parameters`: None
282
+ - `ddp_bucket_cap_mb`: None
283
+ - `ddp_broadcast_buffers`: False
284
+ - `dataloader_pin_memory`: True
285
+ - `dataloader_persistent_workers`: False
286
+ - `skip_memory_metrics`: True
287
+ - `use_legacy_prediction_loop`: False
288
+ - `push_to_hub`: False
289
+ - `resume_from_checkpoint`: None
290
+ - `hub_model_id`: None
291
+ - `hub_strategy`: every_save
292
+ - `hub_private_repo`: None
293
+ - `hub_always_push`: False
294
+ - `gradient_checkpointing`: False
295
+ - `gradient_checkpointing_kwargs`: None
296
+ - `include_inputs_for_metrics`: False
297
+ - `include_for_metrics`: []
298
+ - `eval_do_concat_batches`: True
299
+ - `fp16_backend`: auto
300
+ - `push_to_hub_model_id`: None
301
+ - `push_to_hub_organization`: None
302
+ - `mp_parameters`:
303
+ - `auto_find_batch_size`: False
304
+ - `full_determinism`: False
305
+ - `torchdynamo`: None
306
+ - `ray_scope`: last
307
+ - `ddp_timeout`: 1800
308
+ - `torch_compile`: False
309
+ - `torch_compile_backend`: None
310
+ - `torch_compile_mode`: None
311
+ - `include_tokens_per_second`: False
312
+ - `include_num_input_tokens_seen`: False
313
+ - `neftune_noise_alpha`: None
314
+ - `optim_target_modules`: None
315
+ - `batch_eval_metrics`: False
316
+ - `eval_on_start`: False
317
+ - `use_liger_kernel`: False
318
+ - `eval_use_gather_object`: False
319
+ - `average_tokens_across_devices`: False
320
+ - `prompts`: None
321
+ - `batch_sampler`: batch_sampler
322
+ - `multi_dataset_batch_sampler`: round_robin
323
+
324
+ </details>
325
+
326
+ ### Training Logs
327
+ | Epoch | Step | Training Loss | eval_spearman_cosine |
328
+ |:------:|:----:|:-------------:|:--------------------:|
329
+ | 0.1972 | 100 | - | nan |
330
+ | 0.3945 | 200 | - | nan |
331
+ | 0.5917 | 300 | - | nan |
332
+ | 0.7890 | 400 | - | nan |
333
+ | 0.9862 | 500 | 0.28 | nan |
334
+ | 1.0 | 507 | - | nan |
335
+ | 1.1834 | 600 | - | nan |
336
+ | 1.3807 | 700 | - | nan |
337
+ | 1.5779 | 800 | - | nan |
338
+ | 1.7751 | 900 | - | nan |
339
+ | 1.9724 | 1000 | 0.0393 | nan |
340
+ | 2.0 | 1014 | - | nan |
341
+ | 2.1696 | 1100 | - | nan |
342
+ | 2.3669 | 1200 | - | nan |
343
+ | 2.5641 | 1300 | - | nan |
344
+ | 2.7613 | 1400 | - | nan |
345
+ | 2.9586 | 1500 | 0.0274 | nan |
346
+
347
+
348
+ ### Framework Versions
349
+ - Python: 3.11.13
350
+ - Sentence Transformers: 4.1.0
351
+ - Transformers: 4.52.4
352
+ - PyTorch: 2.6.0+cu124
353
+ - Accelerate: 1.7.0
354
+ - Datasets: 2.14.4
355
+ - Tokenizers: 0.21.1
356
+
357
+ ## Citation
358
+
359
+ ### BibTeX
360
+
361
+ #### Sentence Transformers
362
+ ```bibtex
363
+ @inproceedings{reimers-2019-sentence-bert,
364
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
365
+ author = "Reimers, Nils and Gurevych, Iryna",
366
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
367
+ month = "11",
368
+ year = "2019",
369
+ publisher = "Association for Computational Linguistics",
370
+ url = "https://arxiv.org/abs/1908.10084",
371
+ }
372
+ ```
373
+
374
+ #### MultipleNegativesRankingLoss
375
+ ```bibtex
376
+ @misc{henderson2017efficient,
377
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
378
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
379
+ year={2017},
380
+ eprint={1705.00652},
381
+ archivePrefix={arXiv},
382
+ primaryClass={cs.CL}
383
+ }
384
+ ```
385
+
386
+ <!--
387
+ ## Glossary
388
+
389
+ *Clearly define terms in order to be accessible across audiences.*
390
+ -->
391
+
392
+ <!--
393
+ ## Model Card Authors
394
+
395
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
396
+ -->
397
+
398
+ <!--
399
+ ## Model Card Contact
400
+
401
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
402
+ -->
checkpoint-1500/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.52.4",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
checkpoint-1500/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.4",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-1500/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:912d6a3b8bf777d9a898b03f0c4dbfab1b45d564b490b270afd867103372f2c5
3
+ size 470637416
checkpoint-1500/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
checkpoint-1500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74a8db289c9bb2d1a7f7e4cab91157c90af1334ee158f670ba4edbed5acfdf20
3
+ size 940212218
checkpoint-1500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dfee4901e3a689f3d66ecbc899041b4ba253322395c73cd095c44cc6f098d4d
3
+ size 14244
checkpoint-1500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4c6d2d58a3b9966705e49a7c4047f9889d86d517c933ee6e63399fdc64fd784
3
+ size 1064
checkpoint-1500/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
checkpoint-1500/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-1500/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
checkpoint-1500/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
checkpoint-1500/trainer_state.json ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.9585798816568047,
6
+ "eval_steps": 100,
7
+ "global_step": 1500,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.19723865877712032,
14
+ "eval_pearson_cosine": NaN,
15
+ "eval_runtime": 1.2181,
16
+ "eval_samples_per_second": 0.0,
17
+ "eval_spearman_cosine": NaN,
18
+ "eval_steps_per_second": 0.0,
19
+ "step": 100
20
+ },
21
+ {
22
+ "epoch": 0.39447731755424065,
23
+ "eval_pearson_cosine": NaN,
24
+ "eval_runtime": 1.5897,
25
+ "eval_samples_per_second": 0.0,
26
+ "eval_spearman_cosine": NaN,
27
+ "eval_steps_per_second": 0.0,
28
+ "step": 200
29
+ },
30
+ {
31
+ "epoch": 0.591715976331361,
32
+ "eval_pearson_cosine": NaN,
33
+ "eval_runtime": 2.847,
34
+ "eval_samples_per_second": 0.0,
35
+ "eval_spearman_cosine": NaN,
36
+ "eval_steps_per_second": 0.0,
37
+ "step": 300
38
+ },
39
+ {
40
+ "epoch": 0.7889546351084813,
41
+ "eval_pearson_cosine": NaN,
42
+ "eval_runtime": 2.166,
43
+ "eval_samples_per_second": 0.0,
44
+ "eval_spearman_cosine": NaN,
45
+ "eval_steps_per_second": 0.0,
46
+ "step": 400
47
+ },
48
+ {
49
+ "epoch": 0.9861932938856016,
50
+ "grad_norm": 8.998483657836914,
51
+ "learning_rate": 1.4372355430183358e-05,
52
+ "loss": 0.28,
53
+ "step": 500
54
+ },
55
+ {
56
+ "epoch": 0.9861932938856016,
57
+ "eval_pearson_cosine": NaN,
58
+ "eval_runtime": 1.2219,
59
+ "eval_samples_per_second": 0.0,
60
+ "eval_spearman_cosine": NaN,
61
+ "eval_steps_per_second": 0.0,
62
+ "step": 500
63
+ },
64
+ {
65
+ "epoch": 1.183431952662722,
66
+ "eval_pearson_cosine": NaN,
67
+ "eval_runtime": 3.4138,
68
+ "eval_samples_per_second": 0.0,
69
+ "eval_spearman_cosine": NaN,
70
+ "eval_steps_per_second": 0.0,
71
+ "step": 600
72
+ },
73
+ {
74
+ "epoch": 1.3806706114398422,
75
+ "eval_pearson_cosine": NaN,
76
+ "eval_runtime": 1.3764,
77
+ "eval_samples_per_second": 0.0,
78
+ "eval_spearman_cosine": NaN,
79
+ "eval_steps_per_second": 0.0,
80
+ "step": 700
81
+ },
82
+ {
83
+ "epoch": 1.5779092702169626,
84
+ "eval_pearson_cosine": NaN,
85
+ "eval_runtime": 1.2387,
86
+ "eval_samples_per_second": 0.0,
87
+ "eval_spearman_cosine": NaN,
88
+ "eval_steps_per_second": 0.0,
89
+ "step": 800
90
+ },
91
+ {
92
+ "epoch": 1.7751479289940828,
93
+ "eval_pearson_cosine": NaN,
94
+ "eval_runtime": 1.2026,
95
+ "eval_samples_per_second": 0.0,
96
+ "eval_spearman_cosine": NaN,
97
+ "eval_steps_per_second": 0.0,
98
+ "step": 900
99
+ },
100
+ {
101
+ "epoch": 1.972386587771203,
102
+ "grad_norm": 0.12859900295734406,
103
+ "learning_rate": 7.320169252468266e-06,
104
+ "loss": 0.0393,
105
+ "step": 1000
106
+ },
107
+ {
108
+ "epoch": 1.972386587771203,
109
+ "eval_pearson_cosine": NaN,
110
+ "eval_runtime": 4.1539,
111
+ "eval_samples_per_second": 0.0,
112
+ "eval_spearman_cosine": NaN,
113
+ "eval_steps_per_second": 0.0,
114
+ "step": 1000
115
+ },
116
+ {
117
+ "epoch": 2.1696252465483234,
118
+ "eval_pearson_cosine": NaN,
119
+ "eval_runtime": 1.2677,
120
+ "eval_samples_per_second": 0.0,
121
+ "eval_spearman_cosine": NaN,
122
+ "eval_steps_per_second": 0.0,
123
+ "step": 1100
124
+ },
125
+ {
126
+ "epoch": 2.366863905325444,
127
+ "eval_pearson_cosine": NaN,
128
+ "eval_runtime": 1.2481,
129
+ "eval_samples_per_second": 0.0,
130
+ "eval_spearman_cosine": NaN,
131
+ "eval_steps_per_second": 0.0,
132
+ "step": 1200
133
+ },
134
+ {
135
+ "epoch": 2.564102564102564,
136
+ "eval_pearson_cosine": NaN,
137
+ "eval_runtime": 1.5014,
138
+ "eval_samples_per_second": 0.0,
139
+ "eval_spearman_cosine": NaN,
140
+ "eval_steps_per_second": 0.0,
141
+ "step": 1300
142
+ },
143
+ {
144
+ "epoch": 2.7613412228796843,
145
+ "eval_pearson_cosine": NaN,
146
+ "eval_runtime": 1.6007,
147
+ "eval_samples_per_second": 0.0,
148
+ "eval_spearman_cosine": NaN,
149
+ "eval_steps_per_second": 0.0,
150
+ "step": 1400
151
+ },
152
+ {
153
+ "epoch": 2.9585798816568047,
154
+ "grad_norm": 2.3075523376464844,
155
+ "learning_rate": 2.679830747531735e-07,
156
+ "loss": 0.0274,
157
+ "step": 1500
158
+ },
159
+ {
160
+ "epoch": 2.9585798816568047,
161
+ "eval_pearson_cosine": NaN,
162
+ "eval_runtime": 1.6228,
163
+ "eval_samples_per_second": 0.0,
164
+ "eval_spearman_cosine": NaN,
165
+ "eval_steps_per_second": 0.0,
166
+ "step": 1500
167
+ }
168
+ ],
169
+ "logging_steps": 500,
170
+ "max_steps": 1521,
171
+ "num_input_tokens_seen": 0,
172
+ "num_train_epochs": 3,
173
+ "save_steps": 500,
174
+ "stateful_callbacks": {
175
+ "TrainerControl": {
176
+ "args": {
177
+ "should_epoch_stop": false,
178
+ "should_evaluate": false,
179
+ "should_log": false,
180
+ "should_save": true,
181
+ "should_training_stop": false
182
+ },
183
+ "attributes": {}
184
+ }
185
+ },
186
+ "total_flos": 0.0,
187
+ "train_batch_size": 16,
188
+ "trial_name": null,
189
+ "trial_params": null
190
+ }
checkpoint-1500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6b0c772261a311993bb357660901823f0e8111b9d4198a0bb2d995ed7daee06
3
+ size 5496
checkpoint-1500/unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260
checkpoint-1521/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-1521/README.md ADDED
@@ -0,0 +1,402 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:8100
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: Apakah santri boleh keluar pondok saat dikunjungi?
12
+ sentences:
13
+ - Cukup menghubungi bagian keuangan atau humas PPS. Imam Syafi'i.
14
+ - Keluar pondok hanya boleh dengan izin resmi dan keadaan darurat.
15
+ - Ya, seperti menjadi ketua kelompok, mengatur antrian, dan memimpin doa.
16
+ - source_sentence: Apakah santri boleh membawa HP?
17
+ sentences:
18
+ - HP tidak diperbolehkan dibawa ke lingkungan pesantren.
19
+ - Ya, kurikulum disesuaikan dengan tingkat perkembangan santri.
20
+ - Santri akan mendapatkan pendampingan psikologis dan konseling.
21
+ - source_sentence: Apakah ada kegiatan kebersihan harian di TK?
22
+ sentences:
23
+ - Santri mendapat pembinaan khusus dan apresiasi.
24
+ - Ya, setiap pagi santri melakukan piket kebersihan lingkungan sesuai jadwal.
25
+ - Ya, kurikulum disesuaikan dengan tingkat perkembangan santri.
26
+ - source_sentence: Apakah ada buku panduan bagi wali santri baru?
27
+ sentences:
28
+ - Wali harus mengajukan surat izin resmi dan mendapat persetujuan pengasuh.
29
+ - Ekskul dapat diganti satu kali di tengah semester dengan izin wali kelas.
30
+ - Ya, setiap wali mendapat buku panduan saat pendaftaran.
31
+ - source_sentence: Apakah ekskul dibuka untuk santri baru?
32
+ sentences:
33
+ - Ya, santri harus menjaga ketenangan dan mengembalikan buku tepat waktu.
34
+ - Ya, santri baru dapat langsung mendaftar ekskul di awal semester.
35
+ - Ya, kurikulum terus dievaluasi dan disesuaikan dengan tantangan era modern.
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - pearson_cosine
40
+ - spearman_cosine
41
+ model-index:
42
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
43
+ results:
44
+ - task:
45
+ type: semantic-similarity
46
+ name: Semantic Similarity
47
+ dataset:
48
+ name: eval
49
+ type: eval
50
+ metrics:
51
+ - type: pearson_cosine
52
+ value: .nan
53
+ name: Pearson Cosine
54
+ - type: spearman_cosine
55
+ value: .nan
56
+ name: Spearman Cosine
57
+ ---
58
+
59
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
60
+
61
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
62
+
63
+ ## Model Details
64
+
65
+ ### Model Description
66
+ - **Model Type:** Sentence Transformer
67
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
68
+ - **Maximum Sequence Length:** 128 tokens
69
+ - **Output Dimensionality:** 384 dimensions
70
+ - **Similarity Function:** Cosine Similarity
71
+ <!-- - **Training Dataset:** Unknown -->
72
+ <!-- - **Language:** Unknown -->
73
+ <!-- - **License:** Unknown -->
74
+
75
+ ### Model Sources
76
+
77
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
78
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
79
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
80
+
81
+ ### Full Model Architecture
82
+
83
+ ```
84
+ SentenceTransformer(
85
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
86
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
87
+ )
88
+ ```
89
+
90
+ ## Usage
91
+
92
+ ### Direct Usage (Sentence Transformers)
93
+
94
+ First install the Sentence Transformers library:
95
+
96
+ ```bash
97
+ pip install -U sentence-transformers
98
+ ```
99
+
100
+ Then you can load this model and run inference.
101
+ ```python
102
+ from sentence_transformers import SentenceTransformer
103
+
104
+ # Download from the 🤗 Hub
105
+ model = SentenceTransformer("sentence_transformers_model_id")
106
+ # Run inference
107
+ sentences = [
108
+ 'Apakah ekskul dibuka untuk santri baru?',
109
+ 'Ya, santri baru dapat langsung mendaftar ekskul di awal semester.',
110
+ 'Ya, kurikulum terus dievaluasi dan disesuaikan dengan tantangan era modern.',
111
+ ]
112
+ embeddings = model.encode(sentences)
113
+ print(embeddings.shape)
114
+ # [3, 384]
115
+
116
+ # Get the similarity scores for the embeddings
117
+ similarities = model.similarity(embeddings, embeddings)
118
+ print(similarities.shape)
119
+ # [3, 3]
120
+ ```
121
+
122
+ <!--
123
+ ### Direct Usage (Transformers)
124
+
125
+ <details><summary>Click to see the direct usage in Transformers</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Downstream Usage (Sentence Transformers)
132
+
133
+ You can finetune this model on your own dataset.
134
+
135
+ <details><summary>Click to expand</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Out-of-Scope Use
142
+
143
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
144
+ -->
145
+
146
+ ## Evaluation
147
+
148
+ ### Metrics
149
+
150
+ #### Semantic Similarity
151
+
152
+ * Dataset: `eval`
153
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
154
+
155
+ | Metric | Value |
156
+ |:--------------------|:--------|
157
+ | pearson_cosine | nan |
158
+ | **spearman_cosine** | **nan** |
159
+
160
+ <!--
161
+ ## Bias, Risks and Limitations
162
+
163
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
164
+ -->
165
+
166
+ <!--
167
+ ### Recommendations
168
+
169
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
170
+ -->
171
+
172
+ ## Training Details
173
+
174
+ ### Training Dataset
175
+
176
+ #### Unnamed Dataset
177
+
178
+ * Size: 8,100 training samples
179
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
180
+ * Approximate statistics based on the first 1000 samples:
181
+ | | sentence_0 | sentence_1 |
182
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
183
+ | type | string | string |
184
+ | details | <ul><li>min: 7 tokens</li><li>mean: 11.19 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 15.87 tokens</li><li>max: 42 tokens</li></ul> |
185
+ * Samples:
186
+ | sentence_0 | sentence_1 |
187
+ |:------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
188
+ | <code>Apakah kurikulum mencakup pendidikan karakter?</code> | <code>Ya, pembinaan karakter menjadi bagian utama kurikulum pesantren.</code> |
189
+ | <code>Apakah lingkungan pondok ramah anak?</code> | <code>Ya, desain dan pengawasan mendukung kenyamanan dan keamanan santri.</code> |
190
+ | <code>Apakah nilai adab berpengaruh pada kelulusan?</code> | <code>Sangat berpengaruh, nilai adab menjadi pertimbangan utama dalam penilaian akhir.</code> |
191
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
192
+ ```json
193
+ {
194
+ "scale": 20.0,
195
+ "similarity_fct": "cos_sim"
196
+ }
197
+ ```
198
+
199
+ ### Training Hyperparameters
200
+ #### Non-Default Hyperparameters
201
+
202
+ - `eval_strategy`: steps
203
+ - `per_device_train_batch_size`: 16
204
+ - `per_device_eval_batch_size`: 16
205
+ - `multi_dataset_batch_sampler`: round_robin
206
+
207
+ #### All Hyperparameters
208
+ <details><summary>Click to expand</summary>
209
+
210
+ - `overwrite_output_dir`: False
211
+ - `do_predict`: False
212
+ - `eval_strategy`: steps
213
+ - `prediction_loss_only`: True
214
+ - `per_device_train_batch_size`: 16
215
+ - `per_device_eval_batch_size`: 16
216
+ - `per_gpu_train_batch_size`: None
217
+ - `per_gpu_eval_batch_size`: None
218
+ - `gradient_accumulation_steps`: 1
219
+ - `eval_accumulation_steps`: None
220
+ - `torch_empty_cache_steps`: None
221
+ - `learning_rate`: 5e-05
222
+ - `weight_decay`: 0.0
223
+ - `adam_beta1`: 0.9
224
+ - `adam_beta2`: 0.999
225
+ - `adam_epsilon`: 1e-08
226
+ - `max_grad_norm`: 1
227
+ - `num_train_epochs`: 3
228
+ - `max_steps`: -1
229
+ - `lr_scheduler_type`: linear
230
+ - `lr_scheduler_kwargs`: {}
231
+ - `warmup_ratio`: 0.0
232
+ - `warmup_steps`: 0
233
+ - `log_level`: passive
234
+ - `log_level_replica`: warning
235
+ - `log_on_each_node`: True
236
+ - `logging_nan_inf_filter`: True
237
+ - `save_safetensors`: True
238
+ - `save_on_each_node`: False
239
+ - `save_only_model`: False
240
+ - `restore_callback_states_from_checkpoint`: False
241
+ - `no_cuda`: False
242
+ - `use_cpu`: False
243
+ - `use_mps_device`: False
244
+ - `seed`: 42
245
+ - `data_seed`: None
246
+ - `jit_mode_eval`: False
247
+ - `use_ipex`: False
248
+ - `bf16`: False
249
+ - `fp16`: False
250
+ - `fp16_opt_level`: O1
251
+ - `half_precision_backend`: auto
252
+ - `bf16_full_eval`: False
253
+ - `fp16_full_eval`: False
254
+ - `tf32`: None
255
+ - `local_rank`: 0
256
+ - `ddp_backend`: None
257
+ - `tpu_num_cores`: None
258
+ - `tpu_metrics_debug`: False
259
+ - `debug`: []
260
+ - `dataloader_drop_last`: False
261
+ - `dataloader_num_workers`: 0
262
+ - `dataloader_prefetch_factor`: None
263
+ - `past_index`: -1
264
+ - `disable_tqdm`: False
265
+ - `remove_unused_columns`: True
266
+ - `label_names`: None
267
+ - `load_best_model_at_end`: False
268
+ - `ignore_data_skip`: False
269
+ - `fsdp`: []
270
+ - `fsdp_min_num_params`: 0
271
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
272
+ - `fsdp_transformer_layer_cls_to_wrap`: None
273
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
274
+ - `deepspeed`: None
275
+ - `label_smoothing_factor`: 0.0
276
+ - `optim`: adamw_torch
277
+ - `optim_args`: None
278
+ - `adafactor`: False
279
+ - `group_by_length`: False
280
+ - `length_column_name`: length
281
+ - `ddp_find_unused_parameters`: None
282
+ - `ddp_bucket_cap_mb`: None
283
+ - `ddp_broadcast_buffers`: False
284
+ - `dataloader_pin_memory`: True
285
+ - `dataloader_persistent_workers`: False
286
+ - `skip_memory_metrics`: True
287
+ - `use_legacy_prediction_loop`: False
288
+ - `push_to_hub`: False
289
+ - `resume_from_checkpoint`: None
290
+ - `hub_model_id`: None
291
+ - `hub_strategy`: every_save
292
+ - `hub_private_repo`: None
293
+ - `hub_always_push`: False
294
+ - `gradient_checkpointing`: False
295
+ - `gradient_checkpointing_kwargs`: None
296
+ - `include_inputs_for_metrics`: False
297
+ - `include_for_metrics`: []
298
+ - `eval_do_concat_batches`: True
299
+ - `fp16_backend`: auto
300
+ - `push_to_hub_model_id`: None
301
+ - `push_to_hub_organization`: None
302
+ - `mp_parameters`:
303
+ - `auto_find_batch_size`: False
304
+ - `full_determinism`: False
305
+ - `torchdynamo`: None
306
+ - `ray_scope`: last
307
+ - `ddp_timeout`: 1800
308
+ - `torch_compile`: False
309
+ - `torch_compile_backend`: None
310
+ - `torch_compile_mode`: None
311
+ - `include_tokens_per_second`: False
312
+ - `include_num_input_tokens_seen`: False
313
+ - `neftune_noise_alpha`: None
314
+ - `optim_target_modules`: None
315
+ - `batch_eval_metrics`: False
316
+ - `eval_on_start`: False
317
+ - `use_liger_kernel`: False
318
+ - `eval_use_gather_object`: False
319
+ - `average_tokens_across_devices`: False
320
+ - `prompts`: None
321
+ - `batch_sampler`: batch_sampler
322
+ - `multi_dataset_batch_sampler`: round_robin
323
+
324
+ </details>
325
+
326
+ ### Training Logs
327
+ | Epoch | Step | Training Loss | eval_spearman_cosine |
328
+ |:------:|:----:|:-------------:|:--------------------:|
329
+ | 0.1972 | 100 | - | nan |
330
+ | 0.3945 | 200 | - | nan |
331
+ | 0.5917 | 300 | - | nan |
332
+ | 0.7890 | 400 | - | nan |
333
+ | 0.9862 | 500 | 0.28 | nan |
334
+ | 1.0 | 507 | - | nan |
335
+ | 1.1834 | 600 | - | nan |
336
+ | 1.3807 | 700 | - | nan |
337
+ | 1.5779 | 800 | - | nan |
338
+ | 1.7751 | 900 | - | nan |
339
+ | 1.9724 | 1000 | 0.0393 | nan |
340
+ | 2.0 | 1014 | - | nan |
341
+ | 2.1696 | 1100 | - | nan |
342
+ | 2.3669 | 1200 | - | nan |
343
+ | 2.5641 | 1300 | - | nan |
344
+ | 2.7613 | 1400 | - | nan |
345
+ | 2.9586 | 1500 | 0.0274 | nan |
346
+
347
+
348
+ ### Framework Versions
349
+ - Python: 3.11.13
350
+ - Sentence Transformers: 4.1.0
351
+ - Transformers: 4.52.4
352
+ - PyTorch: 2.6.0+cu124
353
+ - Accelerate: 1.7.0
354
+ - Datasets: 2.14.4
355
+ - Tokenizers: 0.21.1
356
+
357
+ ## Citation
358
+
359
+ ### BibTeX
360
+
361
+ #### Sentence Transformers
362
+ ```bibtex
363
+ @inproceedings{reimers-2019-sentence-bert,
364
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
365
+ author = "Reimers, Nils and Gurevych, Iryna",
366
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
367
+ month = "11",
368
+ year = "2019",
369
+ publisher = "Association for Computational Linguistics",
370
+ url = "https://arxiv.org/abs/1908.10084",
371
+ }
372
+ ```
373
+
374
+ #### MultipleNegativesRankingLoss
375
+ ```bibtex
376
+ @misc{henderson2017efficient,
377
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
378
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
379
+ year={2017},
380
+ eprint={1705.00652},
381
+ archivePrefix={arXiv},
382
+ primaryClass={cs.CL}
383
+ }
384
+ ```
385
+
386
+ <!--
387
+ ## Glossary
388
+
389
+ *Clearly define terms in order to be accessible across audiences.*
390
+ -->
391
+
392
+ <!--
393
+ ## Model Card Authors
394
+
395
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
396
+ -->
397
+
398
+ <!--
399
+ ## Model Card Contact
400
+
401
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
402
+ -->
checkpoint-1521/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.52.4",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
checkpoint-1521/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.4",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-1521/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3dcd6d2d9140cbd7c02ecc37a617f845a0054d900bd1eda5819e0d7663ebe2a
3
+ size 470637416
checkpoint-1521/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
checkpoint-1521/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:927ca651bdb6433b442b7c5e009f5e424eb2480f9ece6f60717af5c320ac0beb
3
+ size 940212218
checkpoint-1521/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c997fe6a93ef53310c727d6001a259df7f798f43848aaa19c09caf8e7df80ab
3
+ size 14244
checkpoint-1521/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:947e75d17a87abcec3ab62aa97fe552d39f14ab8277603337044f9ca9009bd02
3
+ size 1064
checkpoint-1521/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
checkpoint-1521/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-1521/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
checkpoint-1521/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
checkpoint-1521/trainer_state.json ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 100,
7
+ "global_step": 1521,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.19723865877712032,
14
+ "eval_pearson_cosine": NaN,
15
+ "eval_runtime": 1.2181,
16
+ "eval_samples_per_second": 0.0,
17
+ "eval_spearman_cosine": NaN,
18
+ "eval_steps_per_second": 0.0,
19
+ "step": 100
20
+ },
21
+ {
22
+ "epoch": 0.39447731755424065,
23
+ "eval_pearson_cosine": NaN,
24
+ "eval_runtime": 1.5897,
25
+ "eval_samples_per_second": 0.0,
26
+ "eval_spearman_cosine": NaN,
27
+ "eval_steps_per_second": 0.0,
28
+ "step": 200
29
+ },
30
+ {
31
+ "epoch": 0.591715976331361,
32
+ "eval_pearson_cosine": NaN,
33
+ "eval_runtime": 2.847,
34
+ "eval_samples_per_second": 0.0,
35
+ "eval_spearman_cosine": NaN,
36
+ "eval_steps_per_second": 0.0,
37
+ "step": 300
38
+ },
39
+ {
40
+ "epoch": 0.7889546351084813,
41
+ "eval_pearson_cosine": NaN,
42
+ "eval_runtime": 2.166,
43
+ "eval_samples_per_second": 0.0,
44
+ "eval_spearman_cosine": NaN,
45
+ "eval_steps_per_second": 0.0,
46
+ "step": 400
47
+ },
48
+ {
49
+ "epoch": 0.9861932938856016,
50
+ "grad_norm": 8.998483657836914,
51
+ "learning_rate": 1.4372355430183358e-05,
52
+ "loss": 0.28,
53
+ "step": 500
54
+ },
55
+ {
56
+ "epoch": 0.9861932938856016,
57
+ "eval_pearson_cosine": NaN,
58
+ "eval_runtime": 1.2219,
59
+ "eval_samples_per_second": 0.0,
60
+ "eval_spearman_cosine": NaN,
61
+ "eval_steps_per_second": 0.0,
62
+ "step": 500
63
+ },
64
+ {
65
+ "epoch": 1.183431952662722,
66
+ "eval_pearson_cosine": NaN,
67
+ "eval_runtime": 3.4138,
68
+ "eval_samples_per_second": 0.0,
69
+ "eval_spearman_cosine": NaN,
70
+ "eval_steps_per_second": 0.0,
71
+ "step": 600
72
+ },
73
+ {
74
+ "epoch": 1.3806706114398422,
75
+ "eval_pearson_cosine": NaN,
76
+ "eval_runtime": 1.3764,
77
+ "eval_samples_per_second": 0.0,
78
+ "eval_spearman_cosine": NaN,
79
+ "eval_steps_per_second": 0.0,
80
+ "step": 700
81
+ },
82
+ {
83
+ "epoch": 1.5779092702169626,
84
+ "eval_pearson_cosine": NaN,
85
+ "eval_runtime": 1.2387,
86
+ "eval_samples_per_second": 0.0,
87
+ "eval_spearman_cosine": NaN,
88
+ "eval_steps_per_second": 0.0,
89
+ "step": 800
90
+ },
91
+ {
92
+ "epoch": 1.7751479289940828,
93
+ "eval_pearson_cosine": NaN,
94
+ "eval_runtime": 1.2026,
95
+ "eval_samples_per_second": 0.0,
96
+ "eval_spearman_cosine": NaN,
97
+ "eval_steps_per_second": 0.0,
98
+ "step": 900
99
+ },
100
+ {
101
+ "epoch": 1.972386587771203,
102
+ "grad_norm": 0.12859900295734406,
103
+ "learning_rate": 7.320169252468266e-06,
104
+ "loss": 0.0393,
105
+ "step": 1000
106
+ },
107
+ {
108
+ "epoch": 1.972386587771203,
109
+ "eval_pearson_cosine": NaN,
110
+ "eval_runtime": 4.1539,
111
+ "eval_samples_per_second": 0.0,
112
+ "eval_spearman_cosine": NaN,
113
+ "eval_steps_per_second": 0.0,
114
+ "step": 1000
115
+ },
116
+ {
117
+ "epoch": 2.1696252465483234,
118
+ "eval_pearson_cosine": NaN,
119
+ "eval_runtime": 1.2677,
120
+ "eval_samples_per_second": 0.0,
121
+ "eval_spearman_cosine": NaN,
122
+ "eval_steps_per_second": 0.0,
123
+ "step": 1100
124
+ },
125
+ {
126
+ "epoch": 2.366863905325444,
127
+ "eval_pearson_cosine": NaN,
128
+ "eval_runtime": 1.2481,
129
+ "eval_samples_per_second": 0.0,
130
+ "eval_spearman_cosine": NaN,
131
+ "eval_steps_per_second": 0.0,
132
+ "step": 1200
133
+ },
134
+ {
135
+ "epoch": 2.564102564102564,
136
+ "eval_pearson_cosine": NaN,
137
+ "eval_runtime": 1.5014,
138
+ "eval_samples_per_second": 0.0,
139
+ "eval_spearman_cosine": NaN,
140
+ "eval_steps_per_second": 0.0,
141
+ "step": 1300
142
+ },
143
+ {
144
+ "epoch": 2.7613412228796843,
145
+ "eval_pearson_cosine": NaN,
146
+ "eval_runtime": 1.6007,
147
+ "eval_samples_per_second": 0.0,
148
+ "eval_spearman_cosine": NaN,
149
+ "eval_steps_per_second": 0.0,
150
+ "step": 1400
151
+ },
152
+ {
153
+ "epoch": 2.9585798816568047,
154
+ "grad_norm": 2.3075523376464844,
155
+ "learning_rate": 2.679830747531735e-07,
156
+ "loss": 0.0274,
157
+ "step": 1500
158
+ },
159
+ {
160
+ "epoch": 2.9585798816568047,
161
+ "eval_pearson_cosine": NaN,
162
+ "eval_runtime": 1.6228,
163
+ "eval_samples_per_second": 0.0,
164
+ "eval_spearman_cosine": NaN,
165
+ "eval_steps_per_second": 0.0,
166
+ "step": 1500
167
+ }
168
+ ],
169
+ "logging_steps": 500,
170
+ "max_steps": 1521,
171
+ "num_input_tokens_seen": 0,
172
+ "num_train_epochs": 3,
173
+ "save_steps": 500,
174
+ "stateful_callbacks": {
175
+ "TrainerControl": {
176
+ "args": {
177
+ "should_epoch_stop": false,
178
+ "should_evaluate": false,
179
+ "should_log": false,
180
+ "should_save": true,
181
+ "should_training_stop": true
182
+ },
183
+ "attributes": {}
184
+ }
185
+ },
186
+ "total_flos": 0.0,
187
+ "train_batch_size": 16,
188
+ "trial_name": null,
189
+ "trial_params": null
190
+ }
checkpoint-1521/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6b0c772261a311993bb357660901823f0e8111b9d4198a0bb2d995ed7daee06
3
+ size 5496