Eye Disease Model

Model Information:

  • Architecture: EfficientNet-B0
  • Task: Multi-class classification (4 diseases)
  • Dataset: Eye Disease Dataset
  • Input Size: 224×224 RGB images

Classes:

  1. Cataract
  2. Diabetic Retinopathy
  3. Glaucoma
  4. Normal

Performance Metrics:

  • Accuracy: 95%
  • Precision: 0.95
  • Recall: 0.9555
  • F1-Score: 0.95

Usage:

from shifaa.vision import VisionModelFactory

model = VisionModelFactory.create_model(
    model_type="classification",
    model_name="Eye_Disease"
)

result = model.run("eye_image.jpg", show_image=True)
print(f"Disease: {result['predicted_class']}")
print(f"Confidence: {result['confidence']:.2f}%")

Confusion Matrix:

Confusion Matrix

Preprocessing:

  • Resize to 224×224
  • Convert to tensor
  • ImageNet normalization

Training Details:

  • Loss Function: CrossEntropyLoss
  • Optimizer: Adam (lr=0.0001)
  • Scheduler: ReduceLROnPlateau (factor=0.5, patience=3)

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Ahmed-Selem/Shifaa-Eye-Disease-EfficientNetB0

Finetuned
(42)
this model

Collection including Ahmed-Selem/Shifaa-Eye-Disease-EfficientNetB0