Brain Tumor Model

Model Information:

  • Architecture: ResNet18
  • Task: Multi-class classification (4 tumor types)
  • Dataset: Brain Tumor MRI Dataset
  • Input Size: 224×224 RGB images

Classes:

  1. Glioma
  2. Meningioma
  3. Pituitary
  4. No Tumor

Performance Metrics:

  • Accuracy: 98.55%
  • Precision: 0.9861
  • Recall: 0.9855
  • F1-Score: 0.9856

Usage:

from shifaa.vision import VisionModelFactory

model = VisionModelFactory.create_model(
    model_type="classification",
    model_name="Brain_Tumor"
)

result = model.run("brain_mri.jpg", show_image=True)
print(f"Tumor Type: {result['predicted_class']}")
print(f"Confidence: {result['confidence']:.2f}%")

Confusion Matrix:

Confusion Matrix

Preprocessing:

  • Resize to 224×224
  • Random horizontal flip
  • Random rotation ±10°
  • ImageNet normalization

Training Details:

  • Loss Function: CrossEntropyLoss
  • Optimizer: Adam (lr=0.001)
  • Epochs: 30
  • Batch Size: 64

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including Ahmed-Selem/Shifaa-Brain-Tumor-ResNet18