Update README.md
Browse files
README.md
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
-
|
| 2 |
---
|
| 3 |
tags:
|
| 4 |
- generated_from_triptuner
|
| 5 |
- transformer
|
| 6 |
- character-level
|
|
|
|
| 7 |
license: mit
|
| 8 |
library_name: torch
|
| 9 |
---
|
|
@@ -15,7 +15,62 @@ It uses a custom transformer-based language model designed to handle character-l
|
|
| 15 |
|
| 16 |
## Usage
|
| 17 |
|
| 18 |
-
The model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
## Training Data
|
| 21 |
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
tags:
|
| 3 |
- generated_from_triptuner
|
| 4 |
- transformer
|
| 5 |
- character-level
|
| 6 |
+
- custom-model
|
| 7 |
license: mit
|
| 8 |
library_name: torch
|
| 9 |
---
|
|
|
|
| 15 |
|
| 16 |
## Usage
|
| 17 |
|
| 18 |
+
The Triptuner model cannot be directly used with Hugging Face's built-in Inference API because it uses a custom architecture. Below are the instructions on how to manually load and use this model with PyTorch.
|
| 19 |
+
|
| 20 |
+
### Load and Use the Model with PyTorch
|
| 21 |
+
|
| 22 |
+
```python
|
| 23 |
+
import torch
|
| 24 |
+
|
| 25 |
+
# Define your custom model class
|
| 26 |
+
class BigramLanguageModel(nn.Module):
|
| 27 |
+
# Include the complete definition of your BigramLanguageModel here
|
| 28 |
+
|
| 29 |
+
# Example method definitions:
|
| 30 |
+
def __init__(self):
|
| 31 |
+
super().__init__()
|
| 32 |
+
# Define your model layers here as per the training setup
|
| 33 |
+
# Example:
|
| 34 |
+
# self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
|
| 35 |
+
# self.position_embedding_table = nn.Embedding(block_size, n_embd)
|
| 36 |
+
# self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
|
| 37 |
+
# self.ln_f = nn.LayerNorm(n_embd)
|
| 38 |
+
# self.lm_head = nn.Linear(n_embd, vocab_size)
|
| 39 |
+
|
| 40 |
+
def forward(self, idx, targets=None):
|
| 41 |
+
# Define the forward pass as per your model
|
| 42 |
+
pass
|
| 43 |
+
|
| 44 |
+
def generate(self, idx, max_new_tokens):
|
| 45 |
+
# Implement the generate method for text generation
|
| 46 |
+
pass
|
| 47 |
+
|
| 48 |
+
# Load the model weights from Hugging Face
|
| 49 |
+
model = BigramLanguageModel()
|
| 50 |
+
model_url = "https://huggingface.co/yoonusajwardapiit/triptuner/resolve/main/pytorch_model.bin"
|
| 51 |
+
model_weights = torch.hub.load_state_dict_from_url(model_url, map_location=torch.device('cpu'), weights_only=True)
|
| 52 |
+
model.load_state_dict(model_weights)
|
| 53 |
+
model.eval()
|
| 54 |
+
|
| 55 |
+
# Define your character mappings
|
| 56 |
+
chars = sorted(list(set("your_training_text_here"))) # Replace with the actual character set used in training
|
| 57 |
+
stoi = {ch: i for i, ch in enumerate(chars)}
|
| 58 |
+
itos = {i: ch for i, ch in enumerate(chars)}
|
| 59 |
+
encode = lambda s: [stoi[c] for c in s]
|
| 60 |
+
decode = lambda l: ''.join([itos[i] for i in l])
|
| 61 |
+
|
| 62 |
+
# Test the model with a sample prompt
|
| 63 |
+
prompt = "Hanthana" # Replace with any relevant location or prompt
|
| 64 |
+
context = torch.tensor([encode(prompt)], dtype=torch.long)
|
| 65 |
+
|
| 66 |
+
# Generate text using the model
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
generated = model.generate(context, max_new_tokens=250) # Adjust the number of new tokens as needed
|
| 69 |
+
|
| 70 |
+
# Decode and print the generated text
|
| 71 |
+
generated_text = decode(generated[0].tolist())
|
| 72 |
+
print(generated_text)
|
| 73 |
+
|
| 74 |
|
| 75 |
## Training Data
|
| 76 |
|