Create handler.py
Browse files- handler.py +49 -0
handler.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torchvision import transforms
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import os
|
| 5 |
+
import json
|
| 6 |
+
|
| 7 |
+
# لو النموذج PyTorch .pth
|
| 8 |
+
class AIImageSourceHandler:
|
| 9 |
+
def __init__(self):
|
| 10 |
+
self.model = None
|
| 11 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
self.labels = ['Real', 'Midjourney', 'DALL·E', 'StableDiffusion'] # عدّل حسب عدد التصنيفات
|
| 13 |
+
|
| 14 |
+
def initialize(self, model_dir: str):
|
| 15 |
+
# تحميل النموذج
|
| 16 |
+
model_path = os.path.join(model_dir, "model.pth") # عدّل الاسم لو مختلف
|
| 17 |
+
self.model = torch.load(model_path, map_location=self.device)
|
| 18 |
+
self.model.eval()
|
| 19 |
+
|
| 20 |
+
# إعداد التحويلات للصورة
|
| 21 |
+
self.transform = transforms.Compose([
|
| 22 |
+
transforms.Resize((224, 224)),
|
| 23 |
+
transforms.ToTensor(),
|
| 24 |
+
])
|
| 25 |
+
|
| 26 |
+
def preprocess(self, image: Image.Image):
|
| 27 |
+
image = image.convert("RGB")
|
| 28 |
+
return self.transform(image).unsqueeze(0).to(self.device)
|
| 29 |
+
|
| 30 |
+
def predict(self, inputs):
|
| 31 |
+
image = inputs.get("image")
|
| 32 |
+
if image is None:
|
| 33 |
+
return {"error": "No image provided"}
|
| 34 |
+
|
| 35 |
+
img_tensor = self.preprocess(image)
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
outputs = self.model(img_tensor)
|
| 38 |
+
probs = torch.nn.functional.softmax(outputs[0], dim=0)
|
| 39 |
+
|
| 40 |
+
results = {
|
| 41 |
+
label: float(probs[i]) for i, label in enumerate(self.labels)
|
| 42 |
+
}
|
| 43 |
+
return results
|
| 44 |
+
|
| 45 |
+
def __call__(self, data):
|
| 46 |
+
image_data = data.get("inputs") or data.get("image")
|
| 47 |
+
if isinstance(image_data, Image.Image):
|
| 48 |
+
return self.predict({"image": image_data})
|
| 49 |
+
return {"error": "Invalid input"}
|