yaya36095 commited on
Commit
2dfe23d
·
verified ·
1 Parent(s): d7a4c04

Create handler.py

Browse files
Files changed (1) hide show
  1. handler.py +49 -0
handler.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torchvision import transforms
3
+ from PIL import Image
4
+ import os
5
+ import json
6
+
7
+ # لو النموذج PyTorch .pth
8
+ class AIImageSourceHandler:
9
+ def __init__(self):
10
+ self.model = None
11
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ self.labels = ['Real', 'Midjourney', 'DALL·E', 'StableDiffusion'] # عدّل حسب عدد التصنيفات
13
+
14
+ def initialize(self, model_dir: str):
15
+ # تحميل النموذج
16
+ model_path = os.path.join(model_dir, "model.pth") # عدّل الاسم لو مختلف
17
+ self.model = torch.load(model_path, map_location=self.device)
18
+ self.model.eval()
19
+
20
+ # إعداد التحويلات للصورة
21
+ self.transform = transforms.Compose([
22
+ transforms.Resize((224, 224)),
23
+ transforms.ToTensor(),
24
+ ])
25
+
26
+ def preprocess(self, image: Image.Image):
27
+ image = image.convert("RGB")
28
+ return self.transform(image).unsqueeze(0).to(self.device)
29
+
30
+ def predict(self, inputs):
31
+ image = inputs.get("image")
32
+ if image is None:
33
+ return {"error": "No image provided"}
34
+
35
+ img_tensor = self.preprocess(image)
36
+ with torch.no_grad():
37
+ outputs = self.model(img_tensor)
38
+ probs = torch.nn.functional.softmax(outputs[0], dim=0)
39
+
40
+ results = {
41
+ label: float(probs[i]) for i, label in enumerate(self.labels)
42
+ }
43
+ return results
44
+
45
+ def __call__(self, data):
46
+ image_data = data.get("inputs") or data.get("image")
47
+ if isinstance(image_data, Image.Image):
48
+ return self.predict({"image": image_data})
49
+ return {"error": "Invalid input"}