Add SetFit model
Browse files- README.md +36 -82
- config.json +1 -1
- config_setfit.json +1 -3
- model.safetensors +1 -1
- model_head.pkl +2 -2
README.md
CHANGED
|
@@ -9,11 +9,17 @@ base_model: sentence-transformers/all-mpnet-base-v2
|
|
| 9 |
metrics:
|
| 10 |
- accuracy
|
| 11 |
widget:
|
| 12 |
-
- text:
|
| 13 |
-
|
| 14 |
-
- text: How do
|
| 15 |
-
|
| 16 |
-
- text:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
pipeline_tag: text-classification
|
| 18 |
inference: true
|
| 19 |
model-index:
|
|
@@ -48,7 +54,7 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
| 48 |
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
|
| 49 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 50 |
- **Maximum Sequence Length:** 384 tokens
|
| 51 |
-
- **Number of Classes:**
|
| 52 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 53 |
<!-- - **Language:** Unknown -->
|
| 54 |
<!-- - **License:** Unknown -->
|
|
@@ -60,12 +66,10 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
| 60 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 61 |
|
| 62 |
### Model Labels
|
| 63 |
-
| Label
|
| 64 |
-
|
| 65 |
-
|
|
| 66 |
-
|
|
| 67 |
-
| semantic | <ul><li>"Quels sont les avantages de l'apprentissage machine dans le secteur de la santé?"</li><li>'Comment puis-je optimiser les performances de mon site web?'</li><li>'What are the main challenges in cybersecurity?'</li></ul> |
|
| 68 |
-
| lexical | <ul><li>'Quel est le numéro de téléphone du service client ou du customer support?'</li><li>'Comment fonctionne la blockchain?'</li><li>'How can I reset my user password?'</li></ul> |
|
| 69 |
|
| 70 |
## Evaluation
|
| 71 |
|
|
@@ -92,7 +96,7 @@ from setfit import SetFitModel
|
|
| 92 |
# Download from the 🤗 Hub
|
| 93 |
model = SetFitModel.from_pretrained("yaniseuranova/setfit-paraphrase-mpnet-base-v2-sst2")
|
| 94 |
# Run inference
|
| 95 |
-
preds = model("
|
| 96 |
```
|
| 97 |
|
| 98 |
<!--
|
|
@@ -122,16 +126,14 @@ preds = model("Who is the founder of Tesla Motors?")
|
|
| 122 |
## Training Details
|
| 123 |
|
| 124 |
### Training Set Metrics
|
| 125 |
-
| Training set | Min | Median
|
| 126 |
-
|
| 127 |
-
| Word count |
|
| 128 |
|
| 129 |
-
| Label
|
| 130 |
-
|
| 131 |
-
|
|
| 132 |
-
| semantic
|
| 133 |
-
| lexical | 26 |
|
| 134 |
-
| very_lexical | 25 |
|
| 135 |
|
| 136 |
### Training Hyperparameters
|
| 137 |
- batch_size: (16, 16)
|
|
@@ -151,66 +153,18 @@ preds = model("Who is the founder of Tesla Motors?")
|
|
| 151 |
- load_best_model_at_end: True
|
| 152 |
|
| 153 |
### Training Results
|
| 154 |
-
| Epoch | Step
|
| 155 |
-
|
| 156 |
-
| 0.
|
| 157 |
-
| 0.
|
| 158 |
-
| 0
|
| 159 |
-
|
|
| 160 |
-
| 0
|
| 161 |
-
|
|
| 162 |
-
|
|
| 163 |
-
| 0
|
| 164 |
-
|
|
| 165 |
-
| 0
|
| 166 |
-
| 0.7485 | 500 | 0.0006 | - |
|
| 167 |
-
| 0.8234 | 550 | 0.0003 | - |
|
| 168 |
-
| 0.8982 | 600 | 0.0003 | - |
|
| 169 |
-
| 0.9731 | 650 | 0.0003 | - |
|
| 170 |
-
| 1.0 | 668 | - | 0.0001 |
|
| 171 |
-
| 1.0479 | 700 | 0.0002 | - |
|
| 172 |
-
| 1.1228 | 750 | 0.0002 | - |
|
| 173 |
-
| 1.1976 | 800 | 0.0002 | - |
|
| 174 |
-
| 1.2725 | 850 | 0.0003 | - |
|
| 175 |
-
| 1.3473 | 900 | 0.0003 | - |
|
| 176 |
-
| 1.4222 | 950 | 0.0001 | - |
|
| 177 |
-
| 1.4970 | 1000 | 0.0002 | - |
|
| 178 |
-
| 1.5719 | 1050 | 0.0002 | - |
|
| 179 |
-
| 1.6467 | 1100 | 0.0003 | - |
|
| 180 |
-
| 1.7216 | 1150 | 0.0001 | - |
|
| 181 |
-
| 1.7964 | 1200 | 0.0001 | - |
|
| 182 |
-
| 1.8713 | 1250 | 0.0002 | - |
|
| 183 |
-
| 1.9461 | 1300 | 0.0001 | - |
|
| 184 |
-
| 2.0 | 1336 | - | 0.0001 |
|
| 185 |
-
| 2.0210 | 1350 | 0.0001 | - |
|
| 186 |
-
| 2.0958 | 1400 | 0.0001 | - |
|
| 187 |
-
| 2.1707 | 1450 | 0.0002 | - |
|
| 188 |
-
| 2.2455 | 1500 | 0.0002 | - |
|
| 189 |
-
| 2.3204 | 1550 | 0.0001 | - |
|
| 190 |
-
| 2.3952 | 1600 | 0.0001 | - |
|
| 191 |
-
| 2.4701 | 1650 | 0.0002 | - |
|
| 192 |
-
| 2.5449 | 1700 | 0.0001 | - |
|
| 193 |
-
| 2.6198 | 1750 | 0.0001 | - |
|
| 194 |
-
| 2.6946 | 1800 | 0.0001 | - |
|
| 195 |
-
| 2.7695 | 1850 | 0.0001 | - |
|
| 196 |
-
| 2.8443 | 1900 | 0.0001 | - |
|
| 197 |
-
| 2.9192 | 1950 | 0.0001 | - |
|
| 198 |
-
| 2.9940 | 2000 | 0.0001 | - |
|
| 199 |
-
| 3.0 | 2004 | - | 0.0 |
|
| 200 |
-
| 3.0689 | 2050 | 0.0001 | - |
|
| 201 |
-
| 3.1437 | 2100 | 0.0001 | - |
|
| 202 |
-
| 3.2186 | 2150 | 0.0001 | - |
|
| 203 |
-
| 3.2934 | 2200 | 0.0001 | - |
|
| 204 |
-
| 3.3683 | 2250 | 0.0001 | - |
|
| 205 |
-
| 3.4431 | 2300 | 0.0001 | - |
|
| 206 |
-
| 3.5180 | 2350 | 0.0001 | - |
|
| 207 |
-
| 3.5928 | 2400 | 0.0001 | - |
|
| 208 |
-
| 3.6677 | 2450 | 0.0001 | - |
|
| 209 |
-
| 3.7425 | 2500 | 0.0001 | - |
|
| 210 |
-
| 3.8174 | 2550 | 0.0001 | - |
|
| 211 |
-
| 3.8922 | 2600 | 0.0001 | - |
|
| 212 |
-
| 3.9671 | 2650 | 0.0001 | - |
|
| 213 |
-
| **4.0** | **2672** | **-** | **0.0** |
|
| 214 |
|
| 215 |
* The bold row denotes the saved checkpoint.
|
| 216 |
### Framework Versions
|
|
|
|
| 9 |
metrics:
|
| 10 |
- accuracy
|
| 11 |
widget:
|
| 12 |
+
- text: What is the primary difference between homomorphic encryption and multi-party
|
| 13 |
+
computation in the context of secure multi-party computation protocols?
|
| 14 |
+
- text: How do organizations balance the need for innovation with the potential risks
|
| 15 |
+
and unintended consequences of emerging technologies?
|
| 16 |
+
- text: How doCompaniesbalanceIndividualCreativitywithTeamCollaboration to driveInnovationinthe
|
| 17 |
+
WORKPlace?
|
| 18 |
+
- text: How do companies balance the need for innovation with the risk of disrupting
|
| 19 |
+
their existing business models?
|
| 20 |
+
- text: What is the primary application of Natural Language Processing (NLP) in Google's
|
| 21 |
+
BERT language model, and how does it utilize masked language modeling to improve
|
| 22 |
+
contextual understanding?
|
| 23 |
pipeline_tag: text-classification
|
| 24 |
inference: true
|
| 25 |
model-index:
|
|
|
|
| 54 |
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
|
| 55 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 56 |
- **Maximum Sequence Length:** 384 tokens
|
| 57 |
+
- **Number of Classes:** 2 classes
|
| 58 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 59 |
<!-- - **Language:** Unknown -->
|
| 60 |
<!-- - **License:** Unknown -->
|
|
|
|
| 66 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 67 |
|
| 68 |
### Model Labels
|
| 69 |
+
| Label | Examples |
|
| 70 |
+
|:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 71 |
+
| semantic | <ul><li>'How do artificial intelligence systems navigate the trade-off between simplicity and accuracy when modeling complex real-world phenomena?'</li><li>'How do complex systems, consisting of many interconnected components, give rise to emergent properties that cannot be predicted from the characteristics of their individual parts?'</li><li>'How do complex systems, such as those found in nature and human societies, exhibit emergent properties that arise from the interactions of individual components?'</li></ul> |
|
| 72 |
+
| lexical | <ul><li>'What is the primary difference between a generative adversarial network (GAN) and a variational autoencoder (VAE) in deep learning?'</li><li>'What is the primary difference between a Decision Tree and a Random Forest in Machine Learning, and how do they alleviate overfitting?'</li><li>'What is the primary difference between a Bayesian neural network and a traditional feedforward neural network in the context of machine learning?'</li></ul> |
|
|
|
|
|
|
|
| 73 |
|
| 74 |
## Evaluation
|
| 75 |
|
|
|
|
| 96 |
# Download from the 🤗 Hub
|
| 97 |
model = SetFitModel.from_pretrained("yaniseuranova/setfit-paraphrase-mpnet-base-v2-sst2")
|
| 98 |
# Run inference
|
| 99 |
+
preds = model("How doCompaniesbalanceIndividualCreativitywithTeamCollaboration to driveInnovationinthe WORKPlace?")
|
| 100 |
```
|
| 101 |
|
| 102 |
<!--
|
|
|
|
| 126 |
## Training Details
|
| 127 |
|
| 128 |
### Training Set Metrics
|
| 129 |
+
| Training set | Min | Median | Max |
|
| 130 |
+
|:-------------|:----|:--------|:----|
|
| 131 |
+
| Word count | 5 | 18.8511 | 32 |
|
| 132 |
|
| 133 |
+
| Label | Training Sample Count |
|
| 134 |
+
|:---------|:----------------------|
|
| 135 |
+
| lexical | 23 |
|
| 136 |
+
| semantic | 24 |
|
|
|
|
|
|
|
| 137 |
|
| 138 |
### Training Hyperparameters
|
| 139 |
- batch_size: (16, 16)
|
|
|
|
| 153 |
- load_best_model_at_end: True
|
| 154 |
|
| 155 |
### Training Results
|
| 156 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
| 157 |
+
|:-------:|:-------:|:-------------:|:---------------:|
|
| 158 |
+
| 0.0139 | 1 | 0.2662 | - |
|
| 159 |
+
| 0.6944 | 50 | 0.0007 | - |
|
| 160 |
+
| 1.0 | 72 | - | 0.0003 |
|
| 161 |
+
| 1.3889 | 100 | 0.0004 | - |
|
| 162 |
+
| 2.0 | 144 | - | 0.0001 |
|
| 163 |
+
| 2.0833 | 150 | 0.0003 | - |
|
| 164 |
+
| 2.7778 | 200 | 0.0002 | - |
|
| 165 |
+
| 3.0 | 216 | - | 0.0001 |
|
| 166 |
+
| 3.4722 | 250 | 0.0002 | - |
|
| 167 |
+
| **4.0** | **288** | **-** | **0.0001** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
* The bold row denotes the saved checkpoint.
|
| 170 |
### Framework Versions
|
config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "checkpoints/
|
| 3 |
"architectures": [
|
| 4 |
"MPNetModel"
|
| 5 |
],
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "checkpoints/step_288",
|
| 3 |
"architectures": [
|
| 4 |
"MPNetModel"
|
| 5 |
],
|
config_setfit.json
CHANGED
|
@@ -1,9 +1,7 @@
|
|
| 1 |
{
|
| 2 |
"normalize_embeddings": false,
|
| 3 |
"labels": [
|
| 4 |
-
"very_semantic",
|
| 5 |
-
"semantic",
|
| 6 |
"lexical",
|
| 7 |
-
"
|
| 8 |
]
|
| 9 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"normalize_embeddings": false,
|
| 3 |
"labels": [
|
|
|
|
|
|
|
| 4 |
"lexical",
|
| 5 |
+
"semantic"
|
| 6 |
]
|
| 7 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 437967672
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8dedbddc75ebb08be5ba7197043ab354aa2000a2466f382af22d7a93a7995589
|
| 3 |
size 437967672
|
model_head.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e9620192f6f9c9c643e965c1aa1dec6d39196685b3d03c44e788dd075ab17785
|
| 3 |
+
size 7039
|