---
license: apache-2.0
---
[📚 Paper](https://arxiv.org/abs/2503.19740) - [🤖 GitHub](https://github.com/visurg-ai/LEMON)
We provide the models used in our data curation pipeline in [📚 LEMON: A Large Endoscopic MONocular Dataset and Foundation Model for Perception in Surgical Settings](https://arxiv.org/abs/2503.19740) to assist with constructing the LEMON dataset (for more details about the LEMON dataset and our
LemonFM foundation model, please visit our github repository at [🤖 GitHub](https://github.com/visurg-ai/LEMON)) .
If you use our dataset, model, or code in your research, please cite our paper:
```
@misc{che2025lemonlargeendoscopicmonocular,
title={LEMON: A Large Endoscopic MONocular Dataset and Foundation Model for Perception in Surgical Settings},
author={Chengan Che and Chao Wang and Tom Vercauteren and Sophia Tsoka and Luis C. Garcia-Peraza-Herrera},
year={2025},
eprint={2503.19740},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2503.19740},
}
```
This Hugging Face repository includes video storyboard classification models, frame classification models, and non-surgical object detection models. The model loader file can be found at [model_loader.py](https://huggingface.co/visurg/Surg3M_curation_models/blob/main/model_loader.py)
| Model |
Architecture |
Download |
| Video storyboard classification models |
ResNet-18 |
Full ckpt |
| Frame classification models |
ResNet-18 |
Full ckpt |
| Non-surgical object detection models |
Yolov8-Nano |
Full ckpt |
The data curation pipeline leading to the clean videos in the LEMON dataset is as follows:
Usage
--------
**Video classification models** are employed in the step **2** of the data curation pipeline to classify a video storyboard as either surgical or non-surgical, the models usage is as follows:
```python
import torch
import torchvision
from PIL import Image
from model_loader import build_model
# Load the model
net = build_model(mode='classify')
model_path = 'Video storyboard classification models'
# Enable multi-GPU support
net = torch.nn.DataParallel(net)
torch.backends.cudnn.benchmark = True
state = torch.load(model_path, map_location=torch.device('cpu'))
net.load_state_dict(state['net'])
net.eval()
# Load the video storyboard and convert it to a PyTorch tensor
img_path = 'path/to/your/image.jpg'
img = Image.open(img_path)
img = img.resize((224, 224))
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.4299694, 0.29676908, 0.27707579),
(0.24373249, 0.20208984, 0.19319402)
)
])
img_tensor = transform(img).unsqueeze(0).to('cuda')
# Extract features from the image
outputs = net(img_tensor)
```
**Frame classification models** are used in the step **3** of the data curation pipeline to classify a frame as either surgical or non-surgical, the models usage is as follows:
```python
import torch
import torchvision
from PIL import Image
from model_loader import build_model
# Load the model
net = build_model(mode='classify')
model_path = 'Frame classification models'
# Enable multi-GPU support
net = torch.nn.DataParallel(net)
torch.backends.cudnn.benchmark = True
state = torch.load(model_path, map_location=torch.device('cpu'))
net.load_state_dict(state['net'])
net.eval()
img_path = 'path/to/your/image.jpg'
img = Image.open(img_path)
img = img.resize((224, 224))
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.4299694, 0.29676908, 0.27707579),
(0.24373249, 0.20208984, 0.19319402)
)
])
img_tensor = transform(img).unsqueeze(0).to('cuda')
# Extract features from the image
outputs = net(img_tensor)
```
**Non-surgical object detection models** are used to obliterate the non-surgical region in the surgical frames (e.g. user interface information), the models usage is as follows:
```python
import torch
import torchvision
from PIL import Image
from model_loader import build_model
# Load the model
net = build_model(mode='mask')
model_path = 'Frame classification models'
# Enable multi-GPU support
net = torch.nn.DataParallel(net)
torch.backends.cudnn.benchmark = True
state = torch.load(model_path, map_location=torch.device('cpu'))
net.load_state_dict(state['net'])
net.eval()
img_path = 'path/to/your/image.jpg'
img = Image.open(img_path)
img = img.resize((224, 224))
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.4299694, 0.29676908, 0.27707579),
(0.24373249, 0.20208984, 0.19319402)
)
])
img_tensor = transform(img).unsqueeze(0).to('cuda')
# Extract features from the image
outputs = net(img_tensor)
```