""" Model architectures cho Aspect-Based Sentiment Analysis Hỗ trợ nhiều architectures: Transformer-based, CNN, LSTM, và hybrid models """ import torch import os import torch.nn as nn import torch.nn.functional as F from transformers import ( RobertaPreTrainedModel, RobertaModel, BertPreTrainedModel, BertModel, XLMRobertaPreTrainedModel, XLMRobertaModel, BartPreTrainedModel, BartModel, BartForSequenceClassification, T5PreTrainedModel, T5EncoderModel, AutoConfig, AutoModel, AutoTokenizer, PreTrainedModel ) from transformers.modeling_outputs import SequenceClassifierOutput from typing import Optional class BaseABSA(PreTrainedModel): """Base class cho tất cả ABSA models""" def __init__(self, config): super().__init__(config) self.num_aspects = config.num_aspects self.num_sentiments = config.num_sentiments def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None): raise NotImplementedError def get_sentiment_classifiers(self, hidden_size): """Create sentiment classifiers cho từng aspect""" return nn.ModuleList([ nn.Linear(hidden_size, self.num_sentiments + 1) # +1 cho "none" for _ in range(self.num_aspects) ]) # ========== Transformer-based Models ========== class TransformerForABSA(RobertaPreTrainedModel): """RoBERTa-based model (cho PhoBERT, ViSoBERT, RoBERTa-GRU)""" base_model_prefix = "roberta" def __init__(self, config): super().__init__(config) self.roberta = RobertaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.sentiment_classifiers = nn.ModuleList([ nn.Linear(config.hidden_size, config.num_sentiments + 1) for _ in range(config.num_aspects) ]) self.init_weights() def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None, **kwargs): # RoBERTa-based models don't use token_type_ids, so we ignore it kwargs.pop('token_type_ids', None) # Filter kwargs to only include valid arguments for RobertaModel model_kwargs = { k: v for k, v in kwargs.items() if k in ['position_ids', 'head_mask', 'inputs_embeds', 'output_attentions', 'output_hidden_states'] } return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta(input_ids, attention_mask=attention_mask, return_dict=return_dict, **model_kwargs) pooled = self.dropout(outputs.pooler_output) all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1) loss = None if labels is not None: B, A, _ = all_logits.size() logits_flat = all_logits.view(-1, all_logits.size(-1)) targets_flat = labels.view(-1) loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits_flat, targets_flat) if not return_dict: return ((loss, all_logits) + outputs[2:]) if loss is not None else (all_logits,) + outputs[2:] # T5 returns BaseModelOutput, which has hidden_states # But we need to handle it properly hidden_states = getattr(outputs, 'hidden_states', None) attentions = getattr(outputs, 'attentions', None) return SequenceClassifierOutput( loss=loss, logits=all_logits, hidden_states=hidden_states, attentions=attentions, ) def save_pretrained(self, save_directory: str, **kwargs): # Ensure directory exists os.makedirs(save_directory, exist_ok=True) # Save backbone self.roberta.save_pretrained(save_directory, **kwargs) # Update and save config with custom attributes config = self.roberta.config config.num_aspects = len(self.sentiment_classifiers) config.num_sentiments = self.sentiment_classifiers[0].out_features - 1 # -1 vì không tính lớp "none" # Auto map để AutoModel tự động load đúng class # models.py sẽ được upload vào root của repo config.auto_map = { "AutoModel": "models.TransformerForABSA", "AutoModelForSequenceClassification": "models.TransformerForABSA" } # Lưu thêm thông tin vào config để dễ dàng load lại if not hasattr(config, 'custom_model_type'): config.custom_model_type = 'TransformerForABSA' config.save_pretrained(save_directory, **kwargs) # Save full state_dict (bao gồm cả sentiment_classifiers) sd = kwargs.get("state_dict", None) or self.state_dict() torch.save(sd, os.path.join(save_directory, "pytorch_model.bin")) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: str, num_aspects: int = None, num_sentiments: int = None, **kwargs): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) # Nếu num_aspects và num_sentiments không được truyền vào, đọc từ config if num_aspects is None: num_aspects = getattr(config, 'num_aspects', None) if num_aspects is None: raise ValueError("num_aspects must be provided or present in config") if num_sentiments is None: num_sentiments = getattr(config, 'num_sentiments', None) if num_sentiments is None: raise ValueError("num_sentiments must be provided or present in config") config.num_aspects = num_aspects config.num_sentiments = num_sentiments model = cls(config) # Load backbone weights model.roberta = RobertaModel.from_pretrained( pretrained_model_name_or_path, config=config, **{k: v for k, v in kwargs.items() if k not in ("config", "state_dict")}, ) # Load full state_dict nếu có (bao gồm sentiment_classifiers) try: state_dict_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin") if os.path.exists(state_dict_path): state_dict = torch.load(state_dict_path, map_location="cpu") model.load_state_dict(state_dict, strict=False) elif "state_dict" in kwargs: model.load_state_dict(kwargs["state_dict"], strict=False) except Exception as e: print(f"⚠ Warning: Could not load full state_dict: {e}") return model class BERTForABSA(BertPreTrainedModel): """BERT-based model (cho mBERT)""" def __init__(self, config): super().__init__(config) self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.sentiment_classifiers = nn.ModuleList([ nn.Linear(config.hidden_size, config.num_sentiments + 1) for _ in range(config.num_aspects) ]) self.init_weights() def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None, token_type_ids=None, **kwargs): # BERT models can use token_type_ids, but for single sentence tasks, it's usually all zeros # Filter kwargs to only include valid arguments for BertModel model_kwargs = { k: v for k, v in kwargs.items() if k in ['position_ids', 'head_mask', 'inputs_embeds', 'output_attentions', 'output_hidden_states'] } # BERT expects token_type_ids, but if not provided, it will default to all zeros if token_type_ids is not None: model_kwargs['token_type_ids'] = token_type_ids return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert(input_ids, attention_mask=attention_mask, return_dict=return_dict, **model_kwargs) pooled = self.dropout(outputs.pooler_output) all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1) loss = None if labels is not None: logits_flat = all_logits.view(-1, all_logits.size(-1)) targets_flat = labels.view(-1) loss = nn.CrossEntropyLoss()(logits_flat, targets_flat) if not return_dict: return ((loss, all_logits) + outputs[2:]) if loss is not None else (all_logits,) + outputs[2:] # T5 returns BaseModelOutput, which has hidden_states # But we need to handle it properly hidden_states = getattr(outputs, 'hidden_states', None) attentions = getattr(outputs, 'attentions', None) return SequenceClassifierOutput( loss=loss, logits=all_logits, hidden_states=hidden_states, attentions=attentions, ) def save_pretrained(self, save_directory: str, **kwargs): """Save model with custom attributes""" os.makedirs(save_directory, exist_ok=True) self.bert.save_pretrained(save_directory, **kwargs) config = self.bert.config config.num_aspects = len(self.sentiment_classifiers) config.num_sentiments = self.sentiment_classifiers[0].out_features - 1 config.auto_map = { "AutoModel": "models.BERTForABSA", "AutoModelForSequenceClassification": "models.BERTForABSA" } if not hasattr(config, 'custom_model_type'): config.custom_model_type = 'BERTForABSA' config.save_pretrained(save_directory, **kwargs) sd = kwargs.get("state_dict", None) or self.state_dict() torch.save(sd, os.path.join(save_directory, "pytorch_model.bin")) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: str, num_aspects: int = None, num_sentiments: int = None, **kwargs): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) # Nếu num_aspects và num_sentiments không được truyền vào, đọc từ config if num_aspects is None: num_aspects = getattr(config, 'num_aspects', None) if num_aspects is None: raise ValueError("num_aspects must be provided or present in config") if num_sentiments is None: num_sentiments = getattr(config, 'num_sentiments', None) if num_sentiments is None: raise ValueError("num_sentiments must be provided or present in config") config.num_aspects = num_aspects config.num_sentiments = num_sentiments model = cls(config) model.bert = BertModel.from_pretrained( pretrained_model_name_or_path, config=config, **{k: v for k, v in kwargs.items() if k not in ("config", "state_dict")}, ) # Load full state_dict if available try: state_dict_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin") if os.path.exists(state_dict_path): state_dict = torch.load(state_dict_path, map_location="cpu") model.load_state_dict(state_dict, strict=False) elif "state_dict" in kwargs: model.load_state_dict(kwargs["state_dict"], strict=False) except Exception as e: print(f"⚠ Warning: Could not load full state_dict: {e}") return model class XLMRobertaForABSA(XLMRobertaPreTrainedModel): """XLM-RoBERTa-based model""" def __init__(self, config): super().__init__(config) self.roberta = XLMRobertaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.sentiment_classifiers = nn.ModuleList([ nn.Linear(config.hidden_size, config.num_sentiments + 1) for _ in range(config.num_aspects) ]) self.init_weights() def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta(input_ids, attention_mask=attention_mask, return_dict=return_dict) pooled = self.dropout(outputs.pooler_output) all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1) loss = None if labels is not None: logits_flat = all_logits.view(-1, all_logits.size(-1)) targets_flat = labels.view(-1) loss = nn.CrossEntropyLoss()(logits_flat, targets_flat) if not return_dict: return ((loss, all_logits) + outputs[2:]) if loss is not None else (all_logits,) + outputs[2:] # T5 returns BaseModelOutput, which has hidden_states # But we need to handle it properly hidden_states = getattr(outputs, 'hidden_states', None) attentions = getattr(outputs, 'attentions', None) return SequenceClassifierOutput( loss=loss, logits=all_logits, hidden_states=hidden_states, attentions=attentions, ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: str, num_aspects: int, num_sentiments: int, **kwargs): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) config.num_aspects = num_aspects config.num_sentiments = num_sentiments model = cls(config) model.roberta = XLMRobertaModel.from_pretrained( pretrained_model_name_or_path, config=config, **{k: v for k, v in kwargs.items() if k not in ("config",)}, ) return model class RoBERTaGRUForABSA(RobertaPreTrainedModel): """RoBERTa + GRU hybrid model""" base_model_prefix = "roberta" def __init__(self, config): super().__init__(config) self.roberta = RobertaModel(config) self.gru = nn.GRU( config.hidden_size, config.hidden_size, num_layers=2, batch_first=True, bidirectional=True, dropout=0.2 ) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.sentiment_classifiers = nn.ModuleList([ nn.Linear(config.hidden_size * 2, config.num_sentiments + 1) # *2 vì bidirectional for _ in range(config.num_aspects) ]) self.init_weights() def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta(input_ids, attention_mask=attention_mask, return_dict=return_dict) # Use last_hidden_state thay vì pooler_output sequence_output = outputs.last_hidden_state # [B, L, H] # GRU layer gru_out, _ = self.gru(sequence_output) # [B, L, H*2] # Take last timestep pooled = self.dropout(gru_out[:, -1, :]) # [B, H*2] all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1) loss = None if labels is not None: logits_flat = all_logits.view(-1, all_logits.size(-1)) targets_flat = labels.view(-1) loss = nn.CrossEntropyLoss()(logits_flat, targets_flat) if not return_dict: return ((loss, all_logits) + outputs[2:]) if loss is not None else (all_logits,) + outputs[2:] # T5 returns BaseModelOutput, which has hidden_states # But we need to handle it properly hidden_states = getattr(outputs, 'hidden_states', None) attentions = getattr(outputs, 'attentions', None) return SequenceClassifierOutput( loss=loss, logits=all_logits, hidden_states=hidden_states, attentions=attentions, ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: str, num_aspects: int, num_sentiments: int, **kwargs): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) config.num_aspects = num_aspects config.num_sentiments = num_sentiments model = cls(config) model.roberta = RobertaModel.from_pretrained( pretrained_model_name_or_path, config=config, **{k: v for k, v in kwargs.items() if k not in ("config",)}, ) return model class BartForABSA(BartPreTrainedModel): """BART-based model (cho BartPho)""" def __init__(self, config): super().__init__(config) self.model = BartModel(config) self.dropout = nn.Dropout(config.dropout) self.sentiment_classifiers = nn.ModuleList([ nn.Linear(config.d_model, config.num_sentiments + 1) for _ in range(config.num_aspects) ]) self.init_weights() def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None, **kwargs): # BART models don't use token_type_ids, so we ignore it kwargs.pop('token_type_ids', None) # Filter kwargs to only include valid arguments for BartModel # Remove training-specific arguments that BartModel doesn't accept model_kwargs = { k: v for k, v in kwargs.items() if k in ['position_ids', 'head_mask', 'inputs_embeds', 'output_attentions', 'output_hidden_states'] } return_dict = return_dict if return_dict is not None else self.config.use_return_dict # IMPORTANT: For BART, we need to access encoder output directly # BartModel.forward() returns decoder output in last_hidden_state # We need to call encoder separately to get encoder hidden states # Only call encoder once (don't call full model.forward() to avoid double computation) encoder_outputs = self.model.get_encoder()( input_ids, attention_mask=attention_mask, return_dict=True, **{k: v for k, v in model_kwargs.items()} ) sequence_output = encoder_outputs.last_hidden_state # [B, L, H] - encoder output # Mean pooling with attention mask (weighted mean to avoid padding tokens) if attention_mask is not None: # Expand attention mask to match sequence_output dimensions attention_mask_expanded = attention_mask.unsqueeze(-1).expand(sequence_output.size()).float() # Sum over sequence length, divide by number of non-padding tokens sum_embeddings = torch.sum(sequence_output * attention_mask_expanded, dim=1) sum_mask = torch.clamp(attention_mask_expanded.sum(dim=1), min=1e-9) pooled = sum_embeddings / sum_mask # [B, H] else: pooled = sequence_output.mean(dim=1) # [B, H] pooled = self.dropout(pooled) all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1) loss = None if labels is not None: logits_flat = all_logits.view(-1, all_logits.size(-1)) targets_flat = labels.view(-1) loss = nn.CrossEntropyLoss()(logits_flat, targets_flat) if not return_dict: return ((loss, all_logits) + (encoder_outputs.hidden_states, encoder_outputs.attentions)) if loss is not None else (all_logits,) # Use encoder outputs for hidden_states and attentions hidden_states = getattr(encoder_outputs, 'hidden_states', None) attentions = getattr(encoder_outputs, 'attentions', None) return SequenceClassifierOutput( loss=loss, logits=all_logits, hidden_states=hidden_states, attentions=attentions, ) def save_pretrained(self, save_directory: str, **kwargs): """Save model with custom attributes""" os.makedirs(save_directory, exist_ok=True) self.model.save_pretrained(save_directory, **kwargs) config = self.model.config config.num_aspects = len(self.sentiment_classifiers) config.num_sentiments = self.sentiment_classifiers[0].out_features - 1 config.auto_map = { "AutoModel": "models.BartForABSA", "AutoModelForSequenceClassification": "models.BartForABSA" } if not hasattr(config, 'custom_model_type'): config.custom_model_type = 'BartForABSA' config.save_pretrained(save_directory, **kwargs) sd = kwargs.get("state_dict", None) or self.state_dict() torch.save(sd, os.path.join(save_directory, "pytorch_model.bin")) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: str, num_aspects: int = None, num_sentiments: int = None, **kwargs): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) # Nếu num_aspects và num_sentiments không được truyền vào, đọc từ config if num_aspects is None: num_aspects = getattr(config, 'num_aspects', None) if num_aspects is None: raise ValueError("num_aspects must be provided or present in config") if num_sentiments is None: num_sentiments = getattr(config, 'num_sentiments', None) if num_sentiments is None: raise ValueError("num_sentiments must be provided or present in config") config.num_aspects = num_aspects config.num_sentiments = num_sentiments model = cls(config) model.model = BartModel.from_pretrained( pretrained_model_name_or_path, config=config, **{k: v for k, v in kwargs.items() if k not in ("config", "state_dict")}, ) # Load full state_dict if available try: state_dict_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin") if os.path.exists(state_dict_path): state_dict = torch.load(state_dict_path, map_location="cpu") model.load_state_dict(state_dict, strict=False) elif "state_dict" in kwargs: model.load_state_dict(kwargs["state_dict"], strict=False) except Exception as e: print(f"⚠ Warning: Could not load full state_dict: {e}") return model class T5ForABSA(T5PreTrainedModel): """T5-based model (cho ViT5) - sử dụng encoder only""" def __init__(self, config): super().__init__(config) self.encoder = T5EncoderModel(config) self.dropout = nn.Dropout(config.dropout_rate) self.sentiment_classifiers = nn.ModuleList([ nn.Linear(config.d_model, config.num_sentiments + 1) for _ in range(config.num_aspects) ]) self.init_weights() def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None, **kwargs): # T5 models don't use token_type_ids, so we ignore it kwargs.pop('token_type_ids', None) # Filter kwargs to only include valid arguments for T5EncoderModel model_kwargs = { k: v for k, v in kwargs.items() if k in ['position_ids', 'head_mask', 'inputs_embeds', 'output_attentions', 'output_hidden_states'] } return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.encoder(input_ids, attention_mask=attention_mask, return_dict=return_dict, **model_kwargs) # Mean pooling with attention mask (weighted mean to avoid padding tokens) sequence_output = outputs.last_hidden_state # [B, L, H] if attention_mask is not None: # Expand attention mask to match sequence_output dimensions attention_mask_expanded = attention_mask.unsqueeze(-1).expand(sequence_output.size()).float() # Sum over sequence length, divide by number of non-padding tokens sum_embeddings = torch.sum(sequence_output * attention_mask_expanded, dim=1) sum_mask = torch.clamp(attention_mask_expanded.sum(dim=1), min=1e-9) pooled = sum_embeddings / sum_mask # [B, H] else: pooled = sequence_output.mean(dim=1) # [B, H] pooled = self.dropout(pooled) all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1) loss = None if labels is not None: logits_flat = all_logits.view(-1, all_logits.size(-1)) targets_flat = labels.view(-1) loss = nn.CrossEntropyLoss()(logits_flat, targets_flat) if not return_dict: return ((loss, all_logits) + outputs[2:]) if loss is not None else (all_logits,) + outputs[2:] # T5 returns BaseModelOutput, which has hidden_states # But we need to handle it properly hidden_states = getattr(outputs, 'hidden_states', None) attentions = getattr(outputs, 'attentions', None) return SequenceClassifierOutput( loss=loss, logits=all_logits, hidden_states=hidden_states, attentions=attentions, ) def save_pretrained(self, save_directory: str, **kwargs): """Save model with custom attributes""" os.makedirs(save_directory, exist_ok=True) self.encoder.save_pretrained(save_directory, **kwargs) config = self.encoder.config config.num_aspects = len(self.sentiment_classifiers) config.num_sentiments = self.sentiment_classifiers[0].out_features - 1 config.auto_map = { "AutoModel": "models.T5ForABSA", "AutoModelForSequenceClassification": "models.T5ForABSA" } if not hasattr(config, 'custom_model_type'): config.custom_model_type = 'T5ForABSA' config.save_pretrained(save_directory, **kwargs) sd = kwargs.get("state_dict", None) or self.state_dict() torch.save(sd, os.path.join(save_directory, "pytorch_model.bin")) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: str, num_aspects: int = None, num_sentiments: int = None, **kwargs): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) # Nếu num_aspects và num_sentiments không được truyền vào, đọc từ config if num_aspects is None: num_aspects = getattr(config, 'num_aspects', None) if num_aspects is None: raise ValueError("num_aspects must be provided or present in config") if num_sentiments is None: num_sentiments = getattr(config, 'num_sentiments', None) if num_sentiments is None: raise ValueError("num_sentiments must be provided or present in config") config.num_aspects = num_aspects config.num_sentiments = num_sentiments model = cls(config) model.encoder = T5EncoderModel.from_pretrained( pretrained_model_name_or_path, config=config, **{k: v for k, v in kwargs.items() if k not in ("config", "state_dict")}, ) # Load full state_dict if available try: state_dict_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin") if os.path.exists(state_dict_path): state_dict = torch.load(state_dict_path, map_location="cpu") model.load_state_dict(state_dict, strict=False) elif "state_dict" in kwargs: model.load_state_dict(kwargs["state_dict"], strict=False) except Exception as e: print(f"⚠ Warning: Could not load full state_dict: {e}") return model # ========== Non-Transformer Models ========== class TextCNNForABSA(nn.Module): """TextCNN model - không dùng transformers""" def __init__(self, vocab_size, embed_dim, num_filters, filter_sizes, num_aspects, num_sentiments, max_length=256): super().__init__() self.embedding = nn.Embedding(vocab_size, embed_dim) self.convs = nn.ModuleList([ nn.Conv1d(embed_dim, num_filters, kernel_size=fs) for fs in filter_sizes ]) self.dropout = nn.Dropout(0.5) self.sentiment_classifiers = nn.ModuleList([ nn.Linear(len(filter_sizes) * num_filters, num_sentiments + 1) for _ in range(num_aspects) ]) def forward(self, input_ids, attention_mask=None, labels=None, return_dict=True): # input_ids: [B, L] x = self.embedding(input_ids) # [B, L, E] x = x.permute(0, 2, 1) # [B, E, L] conv_outputs = [] for conv in self.convs: conv_out = F.relu(conv(x)) # [B, F, L'] pooled = F.max_pool1d(conv_out, kernel_size=conv_out.size(2)) # [B, F, 1] conv_outputs.append(pooled.squeeze(2)) # [B, F] x = torch.cat(conv_outputs, dim=1) # [B, F*len(filter_sizes)] x = self.dropout(x) all_logits = torch.stack([cls(x) for cls in self.sentiment_classifiers], dim=1) loss = None if labels is not None: logits_flat = all_logits.view(-1, all_logits.size(-1)) targets_flat = labels.view(-1) loss = nn.CrossEntropyLoss()(logits_flat, targets_flat) if return_dict: return SequenceClassifierOutput( loss=loss, logits=all_logits, hidden_states=None, attentions=None ) return (loss, all_logits) if loss is not None else (all_logits,) class BiLSTMForABSA(nn.Module): """BiLSTM model - không dùng transformers""" def __init__(self, vocab_size, embed_dim, hidden_dim, num_layers, num_aspects, num_sentiments, dropout=0.3): super().__init__() self.embedding = nn.Embedding(vocab_size, embed_dim) self.lstm = nn.LSTM( embed_dim, hidden_dim, num_layers, batch_first=True, bidirectional=True, dropout=dropout ) self.dropout = nn.Dropout(dropout) self.sentiment_classifiers = nn.ModuleList([ nn.Linear(hidden_dim * 2, num_sentiments + 1) # *2 vì bidirectional for _ in range(num_aspects) ]) def forward(self, input_ids, attention_mask=None, labels=None, return_dict=True): x = self.embedding(input_ids) # [B, L, E] lstm_out, (h_n, c_n) = self.lstm(x) # [B, L, H*2] # Use last non-padding hidden state instead of always using last timestep # This is important because padding tokens can be at the end if attention_mask is not None: # Find the last non-padding token for each sequence # attention_mask: [B, L] where 1 = real token, 0 = padding seq_lengths = attention_mask.sum(dim=1) - 1 # -1 for 0-indexing # Ensure seq_lengths are within valid range seq_lengths = torch.clamp(seq_lengths, min=0, max=lstm_out.size(1) - 1) # Get last hidden state for each sequence: [B, H*2] batch_size = lstm_out.size(0) pooled = lstm_out[torch.arange(batch_size, device=lstm_out.device), seq_lengths, :] else: # Fallback: use last timestep if no attention mask pooled = lstm_out[:, -1, :] # [B, H*2] pooled = self.dropout(pooled) all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1) loss = None if labels is not None: logits_flat = all_logits.view(-1, all_logits.size(-1)) targets_flat = labels.view(-1) loss = nn.CrossEntropyLoss()(logits_flat, targets_flat) if return_dict: return SequenceClassifierOutput( loss=loss, logits=all_logits, hidden_states=None, attentions=None ) return (loss, all_logits) if loss is not None else (all_logits,) # ========== Model Factory ========== def get_model_class(model_name: str): """Factory function để lấy model class dựa trên model name""" model_name_lower = model_name.lower() # RoBERTa-GRU (check first to avoid confusion) if 'roberta' in model_name_lower and ('gru' in model_name_lower or 'roberta-base-gru' in model_name_lower): return RoBERTaGRUForABSA # Roberta-based (PhoBERT v1/v2, ViSoBERT) if 'phobert' in model_name_lower or 'visobert' in model_name_lower or 'roberta' in model_name_lower: return TransformerForABSA # XLM-RoBERTa elif 'xlm-roberta' in model_name_lower or 'xlm_roberta' in model_name_lower: return XLMRobertaForABSA # BERT elif 'bert' in model_name_lower and 'roberta' not in model_name_lower: return BERTForABSA # BART elif 'bart' in model_name_lower: return BartForABSA # T5 elif 't5' in model_name_lower or 'vit5' in model_name_lower: return T5ForABSA # TextCNN elif 'textcnn' in model_name_lower or 'cnn' in model_name_lower: return TextCNNForABSA # BiLSTM elif 'bilstm' in model_name_lower or 'lstm' in model_name_lower: return BiLSTMForABSA # Default: try Roberta else: return TransformerForABSA def create_model(model_name: str, num_aspects: int, num_sentiments: int, vocab_size=None, **kwargs): """ Create model instance dựa trên model name Args: model_name: Tên model hoặc model ID từ Hugging Face num_aspects: Số lượng aspects num_sentiments: Số lượng sentiment classes vocab_size: Vocabulary size (chỉ cần cho TextCNN/BiLSTM) **kwargs: Additional arguments """ model_class = get_model_class(model_name) # RoBERTa-GRU cần base model riêng if model_class == RoBERTaGRUForABSA: # Use roberta-base as base model for RoBERTa-GRU base_model_name = 'roberta-base' return model_class.from_pretrained( base_model_name, num_aspects=num_aspects, num_sentiments=num_sentiments, trust_remote_code=True, **kwargs ) # Non-transformer models if model_class in [TextCNNForABSA, BiLSTMForABSA]: if vocab_size is None: raise ValueError(f"vocab_size is required for {model_class.__name__}") if model_class == TextCNNForABSA: return TextCNNForABSA( vocab_size=vocab_size, embed_dim=kwargs.get('embed_dim', 300), num_filters=kwargs.get('num_filters', 100), filter_sizes=kwargs.get('filter_sizes', [3, 4, 5]), num_aspects=num_aspects, num_sentiments=num_sentiments, max_length=kwargs.get('max_length', 256) ) elif model_class == BiLSTMForABSA: return BiLSTMForABSA( vocab_size=vocab_size, embed_dim=kwargs.get('embed_dim', 300), hidden_dim=kwargs.get('hidden_dim', 256), num_layers=kwargs.get('num_layers', 2), num_aspects=num_aspects, num_sentiments=num_sentiments, dropout=kwargs.get('dropout', 0.3) ) # Transformer models else: return model_class.from_pretrained( model_name, num_aspects=num_aspects, num_sentiments=num_sentiments, trust_remote_code=True, **kwargs )