Update README.md
Browse files
README.md
CHANGED
|
@@ -1,11 +1,76 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
datasets:
|
| 3 |
-
-
|
| 4 |
-
language:
|
| 5 |
-
- vi
|
| 6 |
metrics:
|
| 7 |
- accuracy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
base_model:
|
| 9 |
- vinai/phobert-base
|
| 10 |
pipeline_tag: text-classification
|
| 11 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language: vi
|
| 3 |
+
tags:
|
| 4 |
+
- emotion-recognition
|
| 5 |
+
- vietnamese
|
| 6 |
+
- phobert
|
| 7 |
+
license: apache-2.0
|
| 8 |
datasets:
|
| 9 |
+
- VSMEC
|
|
|
|
|
|
|
| 10 |
metrics:
|
| 11 |
- accuracy
|
| 12 |
+
- f1
|
| 13 |
+
model-index:
|
| 14 |
+
- name: phobert-emotion
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
type: text-classification
|
| 18 |
+
name: Emotion Recognition
|
| 19 |
+
dataset:
|
| 20 |
+
name: VSMEC
|
| 21 |
+
type: custom
|
| 22 |
+
metrics:
|
| 23 |
+
- name: Accuracy
|
| 24 |
+
type: accuracy
|
| 25 |
+
value: <INSERT_ACCURACY>
|
| 26 |
+
- name: F1 Score
|
| 27 |
+
type: f1
|
| 28 |
+
value: <INSERT_F1_SCORE>
|
| 29 |
base_model:
|
| 30 |
- vinai/phobert-base
|
| 31 |
pipeline_tag: text-classification
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
# PhoBERT-Emotion: Emotion Recognition for Vietnamese Text
|
| 35 |
+
|
| 36 |
+
This model is a fine-tuned version of [`vinai/phobert-base`](https://huggingface.co/vinai/phobert-base) on the **VSMEC** dataset for emotion recognition in Vietnamese text. It achieves competitive performance on this task.
|
| 37 |
+
|
| 38 |
+
## Model Details
|
| 39 |
+
|
| 40 |
+
- **Base Model**: [`vinai/phobert-base`](https://huggingface.co/vinai/phobert-base)
|
| 41 |
+
- **Dataset**: [VSMEC](https://github.com/uitnlp/vsmec) (Vietnamese Social Media Emotion Corpus)
|
| 42 |
+
- **Fine-tuning Framework**: HuggingFace Transformers
|
| 43 |
+
- **Hyperparameters**:
|
| 44 |
+
- Batch size: `32`
|
| 45 |
+
- Learning rate: `5e-5`
|
| 46 |
+
- Epochs: `100`
|
| 47 |
+
- Max sequence length: `256`
|
| 48 |
+
|
| 49 |
+
## Dataset
|
| 50 |
+
|
| 51 |
+
The model was trained on the **VSMEC** dataset, which contains Vietnamese social media text annotated with emotion labels. The dataset includes the following emotion categories:
|
| 52 |
+
`{"Anger": 0, "Disgust": 1, "Enjoyment": 2, "Fear": 3, "Other": 4, "Sadness": 5, "Surprise": 6}`.
|
| 53 |
+
|
| 54 |
+
## Results
|
| 55 |
+
|
| 56 |
+
The model was evaluated using the following metrics:
|
| 57 |
+
|
| 58 |
+
- **Accuracy**: `<INSERT_ACCURACY>`
|
| 59 |
+
- **F1 Score**: `<INSERT_F1_SCORE>`
|
| 60 |
+
|
| 61 |
+
## Usage
|
| 62 |
+
|
| 63 |
+
You can use this model for emotion recognition in Vietnamese text. Below is an example of how to use it with the HuggingFace Transformers library:
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 67 |
+
|
| 68 |
+
tokenizer = AutoTokenizer.from_pretrained("visolex/phobert-emotion")
|
| 69 |
+
model = AutoModelForSequenceClassification.from_pretrained("visolex/phobert-emotion")
|
| 70 |
+
|
| 71 |
+
text = "T么i r岷 vui v矛 h么m nay tr峄漣 膽岷筽!"
|
| 72 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256)
|
| 73 |
+
outputs = model(**inputs)
|
| 74 |
+
predicted_class = outputs.logits.argmax(dim=-1).item()
|
| 75 |
+
|
| 76 |
+
print(f"Predicted emotion: {predicted_class}")
|