Upload models.py with huggingface_hub
Browse files
models.py
ADDED
|
@@ -0,0 +1,813 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Model architectures cho Aspect-Based Sentiment Analysis
|
| 3 |
+
Hỗ trợ nhiều architectures: Transformer-based, CNN, LSTM, và hybrid models
|
| 4 |
+
"""
|
| 5 |
+
import torch
|
| 6 |
+
import os
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from transformers import (
|
| 10 |
+
RobertaPreTrainedModel, RobertaModel,
|
| 11 |
+
BertPreTrainedModel, BertModel,
|
| 12 |
+
XLMRobertaPreTrainedModel, XLMRobertaModel,
|
| 13 |
+
BartPreTrainedModel, BartModel, BartForSequenceClassification,
|
| 14 |
+
T5PreTrainedModel, T5EncoderModel,
|
| 15 |
+
AutoConfig, AutoModel, AutoTokenizer,
|
| 16 |
+
PreTrainedModel
|
| 17 |
+
)
|
| 18 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 19 |
+
from typing import Optional
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class BaseABSA(PreTrainedModel):
|
| 23 |
+
"""Base class cho tất cả ABSA models"""
|
| 24 |
+
def __init__(self, config):
|
| 25 |
+
super().__init__(config)
|
| 26 |
+
self.num_aspects = config.num_aspects
|
| 27 |
+
self.num_sentiments = config.num_sentiments
|
| 28 |
+
|
| 29 |
+
def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None):
|
| 30 |
+
raise NotImplementedError
|
| 31 |
+
|
| 32 |
+
def get_sentiment_classifiers(self, hidden_size):
|
| 33 |
+
"""Create sentiment classifiers cho từng aspect"""
|
| 34 |
+
return nn.ModuleList([
|
| 35 |
+
nn.Linear(hidden_size, self.num_sentiments + 1) # +1 cho "none"
|
| 36 |
+
for _ in range(self.num_aspects)
|
| 37 |
+
])
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# ========== Transformer-based Models ==========
|
| 41 |
+
|
| 42 |
+
class TransformerForABSA(RobertaPreTrainedModel):
|
| 43 |
+
"""RoBERTa-based model (cho PhoBERT, ViSoBERT, RoBERTa-GRU)"""
|
| 44 |
+
base_model_prefix = "roberta"
|
| 45 |
+
|
| 46 |
+
def __init__(self, config):
|
| 47 |
+
super().__init__(config)
|
| 48 |
+
self.roberta = RobertaModel(config)
|
| 49 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 50 |
+
self.sentiment_classifiers = nn.ModuleList([
|
| 51 |
+
nn.Linear(config.hidden_size, config.num_sentiments + 1)
|
| 52 |
+
for _ in range(config.num_aspects)
|
| 53 |
+
])
|
| 54 |
+
self.init_weights()
|
| 55 |
+
|
| 56 |
+
def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None, **kwargs):
|
| 57 |
+
# RoBERTa-based models don't use token_type_ids, so we ignore it
|
| 58 |
+
kwargs.pop('token_type_ids', None)
|
| 59 |
+
# Filter kwargs to only include valid arguments for RobertaModel
|
| 60 |
+
model_kwargs = {
|
| 61 |
+
k: v for k, v in kwargs.items()
|
| 62 |
+
if k in ['position_ids', 'head_mask', 'inputs_embeds',
|
| 63 |
+
'output_attentions', 'output_hidden_states']
|
| 64 |
+
}
|
| 65 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 66 |
+
outputs = self.roberta(input_ids, attention_mask=attention_mask, return_dict=return_dict, **model_kwargs)
|
| 67 |
+
pooled = self.dropout(outputs.pooler_output)
|
| 68 |
+
all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1)
|
| 69 |
+
|
| 70 |
+
loss = None
|
| 71 |
+
if labels is not None:
|
| 72 |
+
B, A, _ = all_logits.size()
|
| 73 |
+
logits_flat = all_logits.view(-1, all_logits.size(-1))
|
| 74 |
+
targets_flat = labels.view(-1)
|
| 75 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 76 |
+
loss = loss_fct(logits_flat, targets_flat)
|
| 77 |
+
|
| 78 |
+
if not return_dict:
|
| 79 |
+
return ((loss, all_logits) + outputs[2:]) if loss is not None else (all_logits,) + outputs[2:]
|
| 80 |
+
|
| 81 |
+
# T5 returns BaseModelOutput, which has hidden_states
|
| 82 |
+
# But we need to handle it properly
|
| 83 |
+
hidden_states = getattr(outputs, 'hidden_states', None)
|
| 84 |
+
attentions = getattr(outputs, 'attentions', None)
|
| 85 |
+
|
| 86 |
+
return SequenceClassifierOutput(
|
| 87 |
+
loss=loss, logits=all_logits,
|
| 88 |
+
hidden_states=hidden_states,
|
| 89 |
+
attentions=attentions,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
def save_pretrained(self, save_directory: str, **kwargs):
|
| 93 |
+
# Ensure directory exists
|
| 94 |
+
os.makedirs(save_directory, exist_ok=True)
|
| 95 |
+
|
| 96 |
+
# Save backbone
|
| 97 |
+
self.roberta.save_pretrained(save_directory, **kwargs)
|
| 98 |
+
|
| 99 |
+
# Update and save config with custom attributes
|
| 100 |
+
config = self.roberta.config
|
| 101 |
+
config.num_aspects = len(self.sentiment_classifiers)
|
| 102 |
+
config.num_sentiments = self.sentiment_classifiers[0].out_features - 1 # -1 vì không tính lớp "none"
|
| 103 |
+
# Auto map để AutoModel tự động load đúng class
|
| 104 |
+
# models.py sẽ được upload vào root của repo
|
| 105 |
+
config.auto_map = {
|
| 106 |
+
"AutoModel": "models.TransformerForABSA",
|
| 107 |
+
"AutoModelForSequenceClassification": "models.TransformerForABSA"
|
| 108 |
+
}
|
| 109 |
+
# Lưu thêm thông tin vào config để dễ dàng load lại
|
| 110 |
+
if not hasattr(config, 'custom_model_type'):
|
| 111 |
+
config.custom_model_type = 'TransformerForABSA'
|
| 112 |
+
config.save_pretrained(save_directory, **kwargs)
|
| 113 |
+
|
| 114 |
+
# Save full state_dict (bao gồm cả sentiment_classifiers)
|
| 115 |
+
sd = kwargs.get("state_dict", None) or self.state_dict()
|
| 116 |
+
torch.save(sd, os.path.join(save_directory, "pytorch_model.bin"))
|
| 117 |
+
|
| 118 |
+
@classmethod
|
| 119 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, num_aspects: int = None, num_sentiments: int = None, **kwargs):
|
| 120 |
+
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
| 121 |
+
|
| 122 |
+
# Nếu num_aspects và num_sentiments không được truyền vào, đọc từ config
|
| 123 |
+
if num_aspects is None:
|
| 124 |
+
num_aspects = getattr(config, 'num_aspects', None)
|
| 125 |
+
if num_aspects is None:
|
| 126 |
+
raise ValueError("num_aspects must be provided or present in config")
|
| 127 |
+
|
| 128 |
+
if num_sentiments is None:
|
| 129 |
+
num_sentiments = getattr(config, 'num_sentiments', None)
|
| 130 |
+
if num_sentiments is None:
|
| 131 |
+
raise ValueError("num_sentiments must be provided or present in config")
|
| 132 |
+
|
| 133 |
+
config.num_aspects = num_aspects
|
| 134 |
+
config.num_sentiments = num_sentiments
|
| 135 |
+
|
| 136 |
+
model = cls(config)
|
| 137 |
+
|
| 138 |
+
# Load backbone weights
|
| 139 |
+
model.roberta = RobertaModel.from_pretrained(
|
| 140 |
+
pretrained_model_name_or_path, config=config,
|
| 141 |
+
**{k: v for k, v in kwargs.items() if k not in ("config", "state_dict")},
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# Load full state_dict nếu có (bao gồm sentiment_classifiers)
|
| 145 |
+
try:
|
| 146 |
+
state_dict_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
|
| 147 |
+
if os.path.exists(state_dict_path):
|
| 148 |
+
state_dict = torch.load(state_dict_path, map_location="cpu")
|
| 149 |
+
model.load_state_dict(state_dict, strict=False)
|
| 150 |
+
elif "state_dict" in kwargs:
|
| 151 |
+
model.load_state_dict(kwargs["state_dict"], strict=False)
|
| 152 |
+
except Exception as e:
|
| 153 |
+
print(f"⚠ Warning: Could not load full state_dict: {e}")
|
| 154 |
+
|
| 155 |
+
return model
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class BERTForABSA(BertPreTrainedModel):
|
| 159 |
+
"""BERT-based model (cho mBERT)"""
|
| 160 |
+
def __init__(self, config):
|
| 161 |
+
super().__init__(config)
|
| 162 |
+
self.bert = BertModel(config)
|
| 163 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 164 |
+
self.sentiment_classifiers = nn.ModuleList([
|
| 165 |
+
nn.Linear(config.hidden_size, config.num_sentiments + 1)
|
| 166 |
+
for _ in range(config.num_aspects)
|
| 167 |
+
])
|
| 168 |
+
self.init_weights()
|
| 169 |
+
|
| 170 |
+
def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None, token_type_ids=None, **kwargs):
|
| 171 |
+
# BERT models can use token_type_ids, but for single sentence tasks, it's usually all zeros
|
| 172 |
+
# Filter kwargs to only include valid arguments for BertModel
|
| 173 |
+
model_kwargs = {
|
| 174 |
+
k: v for k, v in kwargs.items()
|
| 175 |
+
if k in ['position_ids', 'head_mask', 'inputs_embeds',
|
| 176 |
+
'output_attentions', 'output_hidden_states']
|
| 177 |
+
}
|
| 178 |
+
# BERT expects token_type_ids, but if not provided, it will default to all zeros
|
| 179 |
+
if token_type_ids is not None:
|
| 180 |
+
model_kwargs['token_type_ids'] = token_type_ids
|
| 181 |
+
|
| 182 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 183 |
+
outputs = self.bert(input_ids, attention_mask=attention_mask, return_dict=return_dict, **model_kwargs)
|
| 184 |
+
pooled = self.dropout(outputs.pooler_output)
|
| 185 |
+
all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1)
|
| 186 |
+
|
| 187 |
+
loss = None
|
| 188 |
+
if labels is not None:
|
| 189 |
+
logits_flat = all_logits.view(-1, all_logits.size(-1))
|
| 190 |
+
targets_flat = labels.view(-1)
|
| 191 |
+
loss = nn.CrossEntropyLoss()(logits_flat, targets_flat)
|
| 192 |
+
|
| 193 |
+
if not return_dict:
|
| 194 |
+
return ((loss, all_logits) + outputs[2:]) if loss is not None else (all_logits,) + outputs[2:]
|
| 195 |
+
|
| 196 |
+
# T5 returns BaseModelOutput, which has hidden_states
|
| 197 |
+
# But we need to handle it properly
|
| 198 |
+
hidden_states = getattr(outputs, 'hidden_states', None)
|
| 199 |
+
attentions = getattr(outputs, 'attentions', None)
|
| 200 |
+
|
| 201 |
+
return SequenceClassifierOutput(
|
| 202 |
+
loss=loss, logits=all_logits,
|
| 203 |
+
hidden_states=hidden_states,
|
| 204 |
+
attentions=attentions,
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
def save_pretrained(self, save_directory: str, **kwargs):
|
| 208 |
+
"""Save model with custom attributes"""
|
| 209 |
+
os.makedirs(save_directory, exist_ok=True)
|
| 210 |
+
self.bert.save_pretrained(save_directory, **kwargs)
|
| 211 |
+
config = self.bert.config
|
| 212 |
+
config.num_aspects = len(self.sentiment_classifiers)
|
| 213 |
+
config.num_sentiments = self.sentiment_classifiers[0].out_features - 1
|
| 214 |
+
config.auto_map = {
|
| 215 |
+
"AutoModel": "models.BERTForABSA",
|
| 216 |
+
"AutoModelForSequenceClassification": "models.BERTForABSA"
|
| 217 |
+
}
|
| 218 |
+
if not hasattr(config, 'custom_model_type'):
|
| 219 |
+
config.custom_model_type = 'BERTForABSA'
|
| 220 |
+
config.save_pretrained(save_directory, **kwargs)
|
| 221 |
+
sd = kwargs.get("state_dict", None) or self.state_dict()
|
| 222 |
+
torch.save(sd, os.path.join(save_directory, "pytorch_model.bin"))
|
| 223 |
+
|
| 224 |
+
@classmethod
|
| 225 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, num_aspects: int = None, num_sentiments: int = None, **kwargs):
|
| 226 |
+
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
| 227 |
+
|
| 228 |
+
# Nếu num_aspects và num_sentiments không được truyền vào, đọc từ config
|
| 229 |
+
if num_aspects is None:
|
| 230 |
+
num_aspects = getattr(config, 'num_aspects', None)
|
| 231 |
+
if num_aspects is None:
|
| 232 |
+
raise ValueError("num_aspects must be provided or present in config")
|
| 233 |
+
|
| 234 |
+
if num_sentiments is None:
|
| 235 |
+
num_sentiments = getattr(config, 'num_sentiments', None)
|
| 236 |
+
if num_sentiments is None:
|
| 237 |
+
raise ValueError("num_sentiments must be provided or present in config")
|
| 238 |
+
|
| 239 |
+
config.num_aspects = num_aspects
|
| 240 |
+
config.num_sentiments = num_sentiments
|
| 241 |
+
model = cls(config)
|
| 242 |
+
model.bert = BertModel.from_pretrained(
|
| 243 |
+
pretrained_model_name_or_path, config=config,
|
| 244 |
+
**{k: v for k, v in kwargs.items() if k not in ("config", "state_dict")},
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
# Load full state_dict if available
|
| 248 |
+
try:
|
| 249 |
+
state_dict_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
|
| 250 |
+
if os.path.exists(state_dict_path):
|
| 251 |
+
state_dict = torch.load(state_dict_path, map_location="cpu")
|
| 252 |
+
model.load_state_dict(state_dict, strict=False)
|
| 253 |
+
elif "state_dict" in kwargs:
|
| 254 |
+
model.load_state_dict(kwargs["state_dict"], strict=False)
|
| 255 |
+
except Exception as e:
|
| 256 |
+
print(f"⚠ Warning: Could not load full state_dict: {e}")
|
| 257 |
+
|
| 258 |
+
return model
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
class XLMRobertaForABSA(XLMRobertaPreTrainedModel):
|
| 262 |
+
"""XLM-RoBERTa-based model"""
|
| 263 |
+
def __init__(self, config):
|
| 264 |
+
super().__init__(config)
|
| 265 |
+
self.roberta = XLMRobertaModel(config)
|
| 266 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 267 |
+
self.sentiment_classifiers = nn.ModuleList([
|
| 268 |
+
nn.Linear(config.hidden_size, config.num_sentiments + 1)
|
| 269 |
+
for _ in range(config.num_aspects)
|
| 270 |
+
])
|
| 271 |
+
self.init_weights()
|
| 272 |
+
|
| 273 |
+
def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None):
|
| 274 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 275 |
+
outputs = self.roberta(input_ids, attention_mask=attention_mask, return_dict=return_dict)
|
| 276 |
+
pooled = self.dropout(outputs.pooler_output)
|
| 277 |
+
all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1)
|
| 278 |
+
|
| 279 |
+
loss = None
|
| 280 |
+
if labels is not None:
|
| 281 |
+
logits_flat = all_logits.view(-1, all_logits.size(-1))
|
| 282 |
+
targets_flat = labels.view(-1)
|
| 283 |
+
loss = nn.CrossEntropyLoss()(logits_flat, targets_flat)
|
| 284 |
+
|
| 285 |
+
if not return_dict:
|
| 286 |
+
return ((loss, all_logits) + outputs[2:]) if loss is not None else (all_logits,) + outputs[2:]
|
| 287 |
+
|
| 288 |
+
# T5 returns BaseModelOutput, which has hidden_states
|
| 289 |
+
# But we need to handle it properly
|
| 290 |
+
hidden_states = getattr(outputs, 'hidden_states', None)
|
| 291 |
+
attentions = getattr(outputs, 'attentions', None)
|
| 292 |
+
|
| 293 |
+
return SequenceClassifierOutput(
|
| 294 |
+
loss=loss, logits=all_logits,
|
| 295 |
+
hidden_states=hidden_states,
|
| 296 |
+
attentions=attentions,
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
@classmethod
|
| 300 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, num_aspects: int, num_sentiments: int, **kwargs):
|
| 301 |
+
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
| 302 |
+
config.num_aspects = num_aspects
|
| 303 |
+
config.num_sentiments = num_sentiments
|
| 304 |
+
model = cls(config)
|
| 305 |
+
model.roberta = XLMRobertaModel.from_pretrained(
|
| 306 |
+
pretrained_model_name_or_path, config=config,
|
| 307 |
+
**{k: v for k, v in kwargs.items() if k not in ("config",)},
|
| 308 |
+
)
|
| 309 |
+
return model
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
class RoBERTaGRUForABSA(RobertaPreTrainedModel):
|
| 313 |
+
"""RoBERTa + GRU hybrid model"""
|
| 314 |
+
base_model_prefix = "roberta"
|
| 315 |
+
|
| 316 |
+
def __init__(self, config):
|
| 317 |
+
super().__init__(config)
|
| 318 |
+
self.roberta = RobertaModel(config)
|
| 319 |
+
self.gru = nn.GRU(
|
| 320 |
+
config.hidden_size, config.hidden_size,
|
| 321 |
+
num_layers=2, batch_first=True, bidirectional=True, dropout=0.2
|
| 322 |
+
)
|
| 323 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 324 |
+
self.sentiment_classifiers = nn.ModuleList([
|
| 325 |
+
nn.Linear(config.hidden_size * 2, config.num_sentiments + 1) # *2 vì bidirectional
|
| 326 |
+
for _ in range(config.num_aspects)
|
| 327 |
+
])
|
| 328 |
+
self.init_weights()
|
| 329 |
+
|
| 330 |
+
def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None):
|
| 331 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 332 |
+
outputs = self.roberta(input_ids, attention_mask=attention_mask, return_dict=return_dict)
|
| 333 |
+
|
| 334 |
+
# Use last_hidden_state thay vì pooler_output
|
| 335 |
+
sequence_output = outputs.last_hidden_state # [B, L, H]
|
| 336 |
+
|
| 337 |
+
# GRU layer
|
| 338 |
+
gru_out, _ = self.gru(sequence_output) # [B, L, H*2]
|
| 339 |
+
# Take last timestep
|
| 340 |
+
pooled = self.dropout(gru_out[:, -1, :]) # [B, H*2]
|
| 341 |
+
|
| 342 |
+
all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1)
|
| 343 |
+
|
| 344 |
+
loss = None
|
| 345 |
+
if labels is not None:
|
| 346 |
+
logits_flat = all_logits.view(-1, all_logits.size(-1))
|
| 347 |
+
targets_flat = labels.view(-1)
|
| 348 |
+
loss = nn.CrossEntropyLoss()(logits_flat, targets_flat)
|
| 349 |
+
|
| 350 |
+
if not return_dict:
|
| 351 |
+
return ((loss, all_logits) + outputs[2:]) if loss is not None else (all_logits,) + outputs[2:]
|
| 352 |
+
|
| 353 |
+
# T5 returns BaseModelOutput, which has hidden_states
|
| 354 |
+
# But we need to handle it properly
|
| 355 |
+
hidden_states = getattr(outputs, 'hidden_states', None)
|
| 356 |
+
attentions = getattr(outputs, 'attentions', None)
|
| 357 |
+
|
| 358 |
+
return SequenceClassifierOutput(
|
| 359 |
+
loss=loss, logits=all_logits,
|
| 360 |
+
hidden_states=hidden_states,
|
| 361 |
+
attentions=attentions,
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
@classmethod
|
| 365 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, num_aspects: int, num_sentiments: int, **kwargs):
|
| 366 |
+
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
| 367 |
+
config.num_aspects = num_aspects
|
| 368 |
+
config.num_sentiments = num_sentiments
|
| 369 |
+
model = cls(config)
|
| 370 |
+
model.roberta = RobertaModel.from_pretrained(
|
| 371 |
+
pretrained_model_name_or_path, config=config,
|
| 372 |
+
**{k: v for k, v in kwargs.items() if k not in ("config",)},
|
| 373 |
+
)
|
| 374 |
+
return model
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
class BartForABSA(BartPreTrainedModel):
|
| 378 |
+
"""BART-based model (cho BartPho)"""
|
| 379 |
+
def __init__(self, config):
|
| 380 |
+
super().__init__(config)
|
| 381 |
+
self.model = BartModel(config)
|
| 382 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 383 |
+
self.sentiment_classifiers = nn.ModuleList([
|
| 384 |
+
nn.Linear(config.d_model, config.num_sentiments + 1)
|
| 385 |
+
for _ in range(config.num_aspects)
|
| 386 |
+
])
|
| 387 |
+
self.init_weights()
|
| 388 |
+
|
| 389 |
+
def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None, **kwargs):
|
| 390 |
+
# BART models don't use token_type_ids, so we ignore it
|
| 391 |
+
kwargs.pop('token_type_ids', None)
|
| 392 |
+
# Filter kwargs to only include valid arguments for BartModel
|
| 393 |
+
# Remove training-specific arguments that BartModel doesn't accept
|
| 394 |
+
model_kwargs = {
|
| 395 |
+
k: v for k, v in kwargs.items()
|
| 396 |
+
if k in ['position_ids', 'head_mask', 'inputs_embeds',
|
| 397 |
+
'output_attentions', 'output_hidden_states']
|
| 398 |
+
}
|
| 399 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 400 |
+
|
| 401 |
+
# IMPORTANT: For BART, we need to access encoder output directly
|
| 402 |
+
# BartModel.forward() returns decoder output in last_hidden_state
|
| 403 |
+
# We need to call encoder separately to get encoder hidden states
|
| 404 |
+
# Only call encoder once (don't call full model.forward() to avoid double computation)
|
| 405 |
+
encoder_outputs = self.model.get_encoder()(
|
| 406 |
+
input_ids,
|
| 407 |
+
attention_mask=attention_mask,
|
| 408 |
+
return_dict=True,
|
| 409 |
+
**{k: v for k, v in model_kwargs.items()}
|
| 410 |
+
)
|
| 411 |
+
sequence_output = encoder_outputs.last_hidden_state # [B, L, H] - encoder output
|
| 412 |
+
|
| 413 |
+
# Mean pooling with attention mask (weighted mean to avoid padding tokens)
|
| 414 |
+
if attention_mask is not None:
|
| 415 |
+
# Expand attention mask to match sequence_output dimensions
|
| 416 |
+
attention_mask_expanded = attention_mask.unsqueeze(-1).expand(sequence_output.size()).float()
|
| 417 |
+
# Sum over sequence length, divide by number of non-padding tokens
|
| 418 |
+
sum_embeddings = torch.sum(sequence_output * attention_mask_expanded, dim=1)
|
| 419 |
+
sum_mask = torch.clamp(attention_mask_expanded.sum(dim=1), min=1e-9)
|
| 420 |
+
pooled = sum_embeddings / sum_mask # [B, H]
|
| 421 |
+
else:
|
| 422 |
+
pooled = sequence_output.mean(dim=1) # [B, H]
|
| 423 |
+
|
| 424 |
+
pooled = self.dropout(pooled)
|
| 425 |
+
all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1)
|
| 426 |
+
|
| 427 |
+
loss = None
|
| 428 |
+
if labels is not None:
|
| 429 |
+
logits_flat = all_logits.view(-1, all_logits.size(-1))
|
| 430 |
+
targets_flat = labels.view(-1)
|
| 431 |
+
loss = nn.CrossEntropyLoss()(logits_flat, targets_flat)
|
| 432 |
+
|
| 433 |
+
if not return_dict:
|
| 434 |
+
return ((loss, all_logits) + (encoder_outputs.hidden_states, encoder_outputs.attentions)) if loss is not None else (all_logits,)
|
| 435 |
+
|
| 436 |
+
# Use encoder outputs for hidden_states and attentions
|
| 437 |
+
hidden_states = getattr(encoder_outputs, 'hidden_states', None)
|
| 438 |
+
attentions = getattr(encoder_outputs, 'attentions', None)
|
| 439 |
+
|
| 440 |
+
return SequenceClassifierOutput(
|
| 441 |
+
loss=loss, logits=all_logits,
|
| 442 |
+
hidden_states=hidden_states,
|
| 443 |
+
attentions=attentions,
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
def save_pretrained(self, save_directory: str, **kwargs):
|
| 447 |
+
"""Save model with custom attributes"""
|
| 448 |
+
os.makedirs(save_directory, exist_ok=True)
|
| 449 |
+
self.model.save_pretrained(save_directory, **kwargs)
|
| 450 |
+
config = self.model.config
|
| 451 |
+
config.num_aspects = len(self.sentiment_classifiers)
|
| 452 |
+
config.num_sentiments = self.sentiment_classifiers[0].out_features - 1
|
| 453 |
+
config.auto_map = {
|
| 454 |
+
"AutoModel": "models.BartForABSA",
|
| 455 |
+
"AutoModelForSequenceClassification": "models.BartForABSA"
|
| 456 |
+
}
|
| 457 |
+
if not hasattr(config, 'custom_model_type'):
|
| 458 |
+
config.custom_model_type = 'BartForABSA'
|
| 459 |
+
config.save_pretrained(save_directory, **kwargs)
|
| 460 |
+
sd = kwargs.get("state_dict", None) or self.state_dict()
|
| 461 |
+
torch.save(sd, os.path.join(save_directory, "pytorch_model.bin"))
|
| 462 |
+
|
| 463 |
+
@classmethod
|
| 464 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, num_aspects: int = None, num_sentiments: int = None, **kwargs):
|
| 465 |
+
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
| 466 |
+
|
| 467 |
+
# Nếu num_aspects và num_sentiments không được truyền vào, đọc từ config
|
| 468 |
+
if num_aspects is None:
|
| 469 |
+
num_aspects = getattr(config, 'num_aspects', None)
|
| 470 |
+
if num_aspects is None:
|
| 471 |
+
raise ValueError("num_aspects must be provided or present in config")
|
| 472 |
+
|
| 473 |
+
if num_sentiments is None:
|
| 474 |
+
num_sentiments = getattr(config, 'num_sentiments', None)
|
| 475 |
+
if num_sentiments is None:
|
| 476 |
+
raise ValueError("num_sentiments must be provided or present in config")
|
| 477 |
+
|
| 478 |
+
config.num_aspects = num_aspects
|
| 479 |
+
config.num_sentiments = num_sentiments
|
| 480 |
+
model = cls(config)
|
| 481 |
+
model.model = BartModel.from_pretrained(
|
| 482 |
+
pretrained_model_name_or_path, config=config,
|
| 483 |
+
**{k: v for k, v in kwargs.items() if k not in ("config", "state_dict")},
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
# Load full state_dict if available
|
| 487 |
+
try:
|
| 488 |
+
state_dict_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
|
| 489 |
+
if os.path.exists(state_dict_path):
|
| 490 |
+
state_dict = torch.load(state_dict_path, map_location="cpu")
|
| 491 |
+
model.load_state_dict(state_dict, strict=False)
|
| 492 |
+
elif "state_dict" in kwargs:
|
| 493 |
+
model.load_state_dict(kwargs["state_dict"], strict=False)
|
| 494 |
+
except Exception as e:
|
| 495 |
+
print(f"⚠ Warning: Could not load full state_dict: {e}")
|
| 496 |
+
|
| 497 |
+
return model
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
class T5ForABSA(T5PreTrainedModel):
|
| 501 |
+
"""T5-based model (cho ViT5) - sử dụng encoder only"""
|
| 502 |
+
def __init__(self, config):
|
| 503 |
+
super().__init__(config)
|
| 504 |
+
self.encoder = T5EncoderModel(config)
|
| 505 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
| 506 |
+
self.sentiment_classifiers = nn.ModuleList([
|
| 507 |
+
nn.Linear(config.d_model, config.num_sentiments + 1)
|
| 508 |
+
for _ in range(config.num_aspects)
|
| 509 |
+
])
|
| 510 |
+
self.init_weights()
|
| 511 |
+
|
| 512 |
+
def forward(self, input_ids=None, attention_mask=None, labels=None, return_dict=None, **kwargs):
|
| 513 |
+
# T5 models don't use token_type_ids, so we ignore it
|
| 514 |
+
kwargs.pop('token_type_ids', None)
|
| 515 |
+
# Filter kwargs to only include valid arguments for T5EncoderModel
|
| 516 |
+
model_kwargs = {
|
| 517 |
+
k: v for k, v in kwargs.items()
|
| 518 |
+
if k in ['position_ids', 'head_mask', 'inputs_embeds',
|
| 519 |
+
'output_attentions', 'output_hidden_states']
|
| 520 |
+
}
|
| 521 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 522 |
+
outputs = self.encoder(input_ids, attention_mask=attention_mask, return_dict=return_dict, **model_kwargs)
|
| 523 |
+
|
| 524 |
+
# Mean pooling with attention mask (weighted mean to avoid padding tokens)
|
| 525 |
+
sequence_output = outputs.last_hidden_state # [B, L, H]
|
| 526 |
+
if attention_mask is not None:
|
| 527 |
+
# Expand attention mask to match sequence_output dimensions
|
| 528 |
+
attention_mask_expanded = attention_mask.unsqueeze(-1).expand(sequence_output.size()).float()
|
| 529 |
+
# Sum over sequence length, divide by number of non-padding tokens
|
| 530 |
+
sum_embeddings = torch.sum(sequence_output * attention_mask_expanded, dim=1)
|
| 531 |
+
sum_mask = torch.clamp(attention_mask_expanded.sum(dim=1), min=1e-9)
|
| 532 |
+
pooled = sum_embeddings / sum_mask # [B, H]
|
| 533 |
+
else:
|
| 534 |
+
pooled = sequence_output.mean(dim=1) # [B, H]
|
| 535 |
+
|
| 536 |
+
pooled = self.dropout(pooled)
|
| 537 |
+
all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1)
|
| 538 |
+
|
| 539 |
+
loss = None
|
| 540 |
+
if labels is not None:
|
| 541 |
+
logits_flat = all_logits.view(-1, all_logits.size(-1))
|
| 542 |
+
targets_flat = labels.view(-1)
|
| 543 |
+
loss = nn.CrossEntropyLoss()(logits_flat, targets_flat)
|
| 544 |
+
|
| 545 |
+
if not return_dict:
|
| 546 |
+
return ((loss, all_logits) + outputs[2:]) if loss is not None else (all_logits,) + outputs[2:]
|
| 547 |
+
|
| 548 |
+
# T5 returns BaseModelOutput, which has hidden_states
|
| 549 |
+
# But we need to handle it properly
|
| 550 |
+
hidden_states = getattr(outputs, 'hidden_states', None)
|
| 551 |
+
attentions = getattr(outputs, 'attentions', None)
|
| 552 |
+
|
| 553 |
+
return SequenceClassifierOutput(
|
| 554 |
+
loss=loss, logits=all_logits,
|
| 555 |
+
hidden_states=hidden_states,
|
| 556 |
+
attentions=attentions,
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
def save_pretrained(self, save_directory: str, **kwargs):
|
| 560 |
+
"""Save model with custom attributes"""
|
| 561 |
+
os.makedirs(save_directory, exist_ok=True)
|
| 562 |
+
self.encoder.save_pretrained(save_directory, **kwargs)
|
| 563 |
+
config = self.encoder.config
|
| 564 |
+
config.num_aspects = len(self.sentiment_classifiers)
|
| 565 |
+
config.num_sentiments = self.sentiment_classifiers[0].out_features - 1
|
| 566 |
+
config.auto_map = {
|
| 567 |
+
"AutoModel": "models.T5ForABSA",
|
| 568 |
+
"AutoModelForSequenceClassification": "models.T5ForABSA"
|
| 569 |
+
}
|
| 570 |
+
if not hasattr(config, 'custom_model_type'):
|
| 571 |
+
config.custom_model_type = 'T5ForABSA'
|
| 572 |
+
config.save_pretrained(save_directory, **kwargs)
|
| 573 |
+
sd = kwargs.get("state_dict", None) or self.state_dict()
|
| 574 |
+
torch.save(sd, os.path.join(save_directory, "pytorch_model.bin"))
|
| 575 |
+
|
| 576 |
+
@classmethod
|
| 577 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, num_aspects: int = None, num_sentiments: int = None, **kwargs):
|
| 578 |
+
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
| 579 |
+
|
| 580 |
+
# Nếu num_aspects và num_sentiments không được truyền vào, đọc từ config
|
| 581 |
+
if num_aspects is None:
|
| 582 |
+
num_aspects = getattr(config, 'num_aspects', None)
|
| 583 |
+
if num_aspects is None:
|
| 584 |
+
raise ValueError("num_aspects must be provided or present in config")
|
| 585 |
+
|
| 586 |
+
if num_sentiments is None:
|
| 587 |
+
num_sentiments = getattr(config, 'num_sentiments', None)
|
| 588 |
+
if num_sentiments is None:
|
| 589 |
+
raise ValueError("num_sentiments must be provided or present in config")
|
| 590 |
+
|
| 591 |
+
config.num_aspects = num_aspects
|
| 592 |
+
config.num_sentiments = num_sentiments
|
| 593 |
+
model = cls(config)
|
| 594 |
+
model.encoder = T5EncoderModel.from_pretrained(
|
| 595 |
+
pretrained_model_name_or_path, config=config,
|
| 596 |
+
**{k: v for k, v in kwargs.items() if k not in ("config", "state_dict")},
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
# Load full state_dict if available
|
| 600 |
+
try:
|
| 601 |
+
state_dict_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
|
| 602 |
+
if os.path.exists(state_dict_path):
|
| 603 |
+
state_dict = torch.load(state_dict_path, map_location="cpu")
|
| 604 |
+
model.load_state_dict(state_dict, strict=False)
|
| 605 |
+
elif "state_dict" in kwargs:
|
| 606 |
+
model.load_state_dict(kwargs["state_dict"], strict=False)
|
| 607 |
+
except Exception as e:
|
| 608 |
+
print(f"⚠ Warning: Could not load full state_dict: {e}")
|
| 609 |
+
|
| 610 |
+
return model
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
# ========== Non-Transformer Models ==========
|
| 614 |
+
|
| 615 |
+
class TextCNNForABSA(nn.Module):
|
| 616 |
+
"""TextCNN model - không dùng transformers"""
|
| 617 |
+
def __init__(self, vocab_size, embed_dim, num_filters, filter_sizes, num_aspects, num_sentiments, max_length=256):
|
| 618 |
+
super().__init__()
|
| 619 |
+
self.embedding = nn.Embedding(vocab_size, embed_dim)
|
| 620 |
+
self.convs = nn.ModuleList([
|
| 621 |
+
nn.Conv1d(embed_dim, num_filters, kernel_size=fs)
|
| 622 |
+
for fs in filter_sizes
|
| 623 |
+
])
|
| 624 |
+
self.dropout = nn.Dropout(0.5)
|
| 625 |
+
self.sentiment_classifiers = nn.ModuleList([
|
| 626 |
+
nn.Linear(len(filter_sizes) * num_filters, num_sentiments + 1)
|
| 627 |
+
for _ in range(num_aspects)
|
| 628 |
+
])
|
| 629 |
+
|
| 630 |
+
def forward(self, input_ids, attention_mask=None, labels=None, return_dict=True):
|
| 631 |
+
# input_ids: [B, L]
|
| 632 |
+
x = self.embedding(input_ids) # [B, L, E]
|
| 633 |
+
x = x.permute(0, 2, 1) # [B, E, L]
|
| 634 |
+
|
| 635 |
+
conv_outputs = []
|
| 636 |
+
for conv in self.convs:
|
| 637 |
+
conv_out = F.relu(conv(x)) # [B, F, L']
|
| 638 |
+
pooled = F.max_pool1d(conv_out, kernel_size=conv_out.size(2)) # [B, F, 1]
|
| 639 |
+
conv_outputs.append(pooled.squeeze(2)) # [B, F]
|
| 640 |
+
|
| 641 |
+
x = torch.cat(conv_outputs, dim=1) # [B, F*len(filter_sizes)]
|
| 642 |
+
x = self.dropout(x)
|
| 643 |
+
|
| 644 |
+
all_logits = torch.stack([cls(x) for cls in self.sentiment_classifiers], dim=1)
|
| 645 |
+
|
| 646 |
+
loss = None
|
| 647 |
+
if labels is not None:
|
| 648 |
+
logits_flat = all_logits.view(-1, all_logits.size(-1))
|
| 649 |
+
targets_flat = labels.view(-1)
|
| 650 |
+
loss = nn.CrossEntropyLoss()(logits_flat, targets_flat)
|
| 651 |
+
|
| 652 |
+
if return_dict:
|
| 653 |
+
return SequenceClassifierOutput(
|
| 654 |
+
loss=loss, logits=all_logits,
|
| 655 |
+
hidden_states=None, attentions=None
|
| 656 |
+
)
|
| 657 |
+
return (loss, all_logits) if loss is not None else (all_logits,)
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
class BiLSTMForABSA(nn.Module):
|
| 661 |
+
"""BiLSTM model - không dùng transformers"""
|
| 662 |
+
def __init__(self, vocab_size, embed_dim, hidden_dim, num_layers, num_aspects, num_sentiments, dropout=0.3):
|
| 663 |
+
super().__init__()
|
| 664 |
+
self.embedding = nn.Embedding(vocab_size, embed_dim)
|
| 665 |
+
self.lstm = nn.LSTM(
|
| 666 |
+
embed_dim, hidden_dim, num_layers,
|
| 667 |
+
batch_first=True, bidirectional=True, dropout=dropout
|
| 668 |
+
)
|
| 669 |
+
self.dropout = nn.Dropout(dropout)
|
| 670 |
+
self.sentiment_classifiers = nn.ModuleList([
|
| 671 |
+
nn.Linear(hidden_dim * 2, num_sentiments + 1) # *2 vì bidirectional
|
| 672 |
+
for _ in range(num_aspects)
|
| 673 |
+
])
|
| 674 |
+
|
| 675 |
+
def forward(self, input_ids, attention_mask=None, labels=None, return_dict=True):
|
| 676 |
+
x = self.embedding(input_ids) # [B, L, E]
|
| 677 |
+
lstm_out, (h_n, c_n) = self.lstm(x) # [B, L, H*2]
|
| 678 |
+
|
| 679 |
+
# Use last non-padding hidden state instead of always using last timestep
|
| 680 |
+
# This is important because padding tokens can be at the end
|
| 681 |
+
if attention_mask is not None:
|
| 682 |
+
# Find the last non-padding token for each sequence
|
| 683 |
+
# attention_mask: [B, L] where 1 = real token, 0 = padding
|
| 684 |
+
seq_lengths = attention_mask.sum(dim=1) - 1 # -1 for 0-indexing
|
| 685 |
+
# Ensure seq_lengths are within valid range
|
| 686 |
+
seq_lengths = torch.clamp(seq_lengths, min=0, max=lstm_out.size(1) - 1)
|
| 687 |
+
# Get last hidden state for each sequence: [B, H*2]
|
| 688 |
+
batch_size = lstm_out.size(0)
|
| 689 |
+
pooled = lstm_out[torch.arange(batch_size, device=lstm_out.device), seq_lengths, :]
|
| 690 |
+
else:
|
| 691 |
+
# Fallback: use last timestep if no attention mask
|
| 692 |
+
pooled = lstm_out[:, -1, :] # [B, H*2]
|
| 693 |
+
|
| 694 |
+
pooled = self.dropout(pooled)
|
| 695 |
+
all_logits = torch.stack([cls(pooled) for cls in self.sentiment_classifiers], dim=1)
|
| 696 |
+
|
| 697 |
+
loss = None
|
| 698 |
+
if labels is not None:
|
| 699 |
+
logits_flat = all_logits.view(-1, all_logits.size(-1))
|
| 700 |
+
targets_flat = labels.view(-1)
|
| 701 |
+
loss = nn.CrossEntropyLoss()(logits_flat, targets_flat)
|
| 702 |
+
|
| 703 |
+
if return_dict:
|
| 704 |
+
return SequenceClassifierOutput(
|
| 705 |
+
loss=loss, logits=all_logits,
|
| 706 |
+
hidden_states=None, attentions=None
|
| 707 |
+
)
|
| 708 |
+
return (loss, all_logits) if loss is not None else (all_logits,)
|
| 709 |
+
|
| 710 |
+
|
| 711 |
+
# ========== Model Factory ==========
|
| 712 |
+
|
| 713 |
+
def get_model_class(model_name: str):
|
| 714 |
+
"""Factory function để lấy model class dựa trên model name"""
|
| 715 |
+
model_name_lower = model_name.lower()
|
| 716 |
+
|
| 717 |
+
# RoBERTa-GRU (check first to avoid confusion)
|
| 718 |
+
if 'roberta' in model_name_lower and ('gru' in model_name_lower or 'roberta-base-gru' in model_name_lower):
|
| 719 |
+
return RoBERTaGRUForABSA
|
| 720 |
+
|
| 721 |
+
# Roberta-based (PhoBERT v1/v2, ViSoBERT)
|
| 722 |
+
if 'phobert' in model_name_lower or 'visobert' in model_name_lower or 'roberta' in model_name_lower:
|
| 723 |
+
return TransformerForABSA
|
| 724 |
+
|
| 725 |
+
# XLM-RoBERTa
|
| 726 |
+
elif 'xlm-roberta' in model_name_lower or 'xlm_roberta' in model_name_lower:
|
| 727 |
+
return XLMRobertaForABSA
|
| 728 |
+
|
| 729 |
+
# BERT
|
| 730 |
+
elif 'bert' in model_name_lower and 'roberta' not in model_name_lower:
|
| 731 |
+
return BERTForABSA
|
| 732 |
+
|
| 733 |
+
# BART
|
| 734 |
+
elif 'bart' in model_name_lower:
|
| 735 |
+
return BartForABSA
|
| 736 |
+
|
| 737 |
+
# T5
|
| 738 |
+
elif 't5' in model_name_lower or 'vit5' in model_name_lower:
|
| 739 |
+
return T5ForABSA
|
| 740 |
+
|
| 741 |
+
# TextCNN
|
| 742 |
+
elif 'textcnn' in model_name_lower or 'cnn' in model_name_lower:
|
| 743 |
+
return TextCNNForABSA
|
| 744 |
+
|
| 745 |
+
# BiLSTM
|
| 746 |
+
elif 'bilstm' in model_name_lower or 'lstm' in model_name_lower:
|
| 747 |
+
return BiLSTMForABSA
|
| 748 |
+
|
| 749 |
+
# Default: try Roberta
|
| 750 |
+
else:
|
| 751 |
+
return TransformerForABSA
|
| 752 |
+
|
| 753 |
+
|
| 754 |
+
def create_model(model_name: str, num_aspects: int, num_sentiments: int, vocab_size=None, **kwargs):
|
| 755 |
+
"""
|
| 756 |
+
Create model instance dựa trên model name
|
| 757 |
+
|
| 758 |
+
Args:
|
| 759 |
+
model_name: Tên model hoặc model ID từ Hugging Face
|
| 760 |
+
num_aspects: Số lượng aspects
|
| 761 |
+
num_sentiments: Số lượng sentiment classes
|
| 762 |
+
vocab_size: Vocabulary size (chỉ cần cho TextCNN/BiLSTM)
|
| 763 |
+
**kwargs: Additional arguments
|
| 764 |
+
"""
|
| 765 |
+
model_class = get_model_class(model_name)
|
| 766 |
+
|
| 767 |
+
# RoBERTa-GRU cần base model riêng
|
| 768 |
+
if model_class == RoBERTaGRUForABSA:
|
| 769 |
+
# Use roberta-base as base model for RoBERTa-GRU
|
| 770 |
+
base_model_name = 'roberta-base'
|
| 771 |
+
return model_class.from_pretrained(
|
| 772 |
+
base_model_name,
|
| 773 |
+
num_aspects=num_aspects,
|
| 774 |
+
num_sentiments=num_sentiments,
|
| 775 |
+
trust_remote_code=True,
|
| 776 |
+
**kwargs
|
| 777 |
+
)
|
| 778 |
+
|
| 779 |
+
# Non-transformer models
|
| 780 |
+
if model_class in [TextCNNForABSA, BiLSTMForABSA]:
|
| 781 |
+
if vocab_size is None:
|
| 782 |
+
raise ValueError(f"vocab_size is required for {model_class.__name__}")
|
| 783 |
+
|
| 784 |
+
if model_class == TextCNNForABSA:
|
| 785 |
+
return TextCNNForABSA(
|
| 786 |
+
vocab_size=vocab_size,
|
| 787 |
+
embed_dim=kwargs.get('embed_dim', 300),
|
| 788 |
+
num_filters=kwargs.get('num_filters', 100),
|
| 789 |
+
filter_sizes=kwargs.get('filter_sizes', [3, 4, 5]),
|
| 790 |
+
num_aspects=num_aspects,
|
| 791 |
+
num_sentiments=num_sentiments,
|
| 792 |
+
max_length=kwargs.get('max_length', 256)
|
| 793 |
+
)
|
| 794 |
+
elif model_class == BiLSTMForABSA:
|
| 795 |
+
return BiLSTMForABSA(
|
| 796 |
+
vocab_size=vocab_size,
|
| 797 |
+
embed_dim=kwargs.get('embed_dim', 300),
|
| 798 |
+
hidden_dim=kwargs.get('hidden_dim', 256),
|
| 799 |
+
num_layers=kwargs.get('num_layers', 2),
|
| 800 |
+
num_aspects=num_aspects,
|
| 801 |
+
num_sentiments=num_sentiments,
|
| 802 |
+
dropout=kwargs.get('dropout', 0.3)
|
| 803 |
+
)
|
| 804 |
+
|
| 805 |
+
# Transformer models
|
| 806 |
+
else:
|
| 807 |
+
return model_class.from_pretrained(
|
| 808 |
+
model_name,
|
| 809 |
+
num_aspects=num_aspects,
|
| 810 |
+
num_sentiments=num_sentiments,
|
| 811 |
+
trust_remote_code=True,
|
| 812 |
+
**kwargs
|
| 813 |
+
)
|