Creating a handler.py file to support HF dedicated inference endpoints (#18)
Browse files- Creating a handler.py file to support HF dedicated inference endpoints (aa98b0abeb8c874aa41f1bd96fe831f84dcd7e6a)
- Update handler.py (43b595da26e564d4f3a877609dbb95b38f367ecb)
Co-authored-by: georges casassovici <zesquirrelnator@users.noreply.huggingface.co>
- handler.py +58 -0
handler.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
import base64
|
| 6 |
+
|
| 7 |
+
class EndpointHandler:
|
| 8 |
+
def __init__(self, model_dir):
|
| 9 |
+
self.model_id = "vikhyatk/moondream2"
|
| 10 |
+
self.model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True)
|
| 11 |
+
self.tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2", trust_remote_code=True)
|
| 12 |
+
|
| 13 |
+
# Check if CUDA (GPU support) is available and then set the device to GPU or CPU
|
| 14 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
self.model.to(self.device)
|
| 16 |
+
|
| 17 |
+
def preprocess_image(self, encoded_image):
|
| 18 |
+
"""Decode and preprocess the input image."""
|
| 19 |
+
decoded_image = base64.b64decode(encoded_image)
|
| 20 |
+
img = Image.open(BytesIO(decoded_image)).convert("RGB")
|
| 21 |
+
return img
|
| 22 |
+
|
| 23 |
+
def __call__(self, data):
|
| 24 |
+
"""Handle the incoming request."""
|
| 25 |
+
try:
|
| 26 |
+
# Extract the inputs from the data
|
| 27 |
+
inputs = data.pop("inputs", data)
|
| 28 |
+
input_image = inputs['image']
|
| 29 |
+
question = inputs.get('question', "move to the red ball")
|
| 30 |
+
|
| 31 |
+
# Preprocess the image
|
| 32 |
+
img = self.preprocess_image(input_image)
|
| 33 |
+
|
| 34 |
+
# Perform inference
|
| 35 |
+
enc_image = self.model.encode_image(img).to(self.device)
|
| 36 |
+
answer = self.model.answer_question(enc_image, question, self.tokenizer)
|
| 37 |
+
|
| 38 |
+
# If the output is a tensor, move it back to CPU and convert to list
|
| 39 |
+
if isinstance(answer, torch.Tensor):
|
| 40 |
+
answer = answer.cpu().numpy().tolist()
|
| 41 |
+
|
| 42 |
+
# Create the response
|
| 43 |
+
response = {
|
| 44 |
+
"statusCode": 200,
|
| 45 |
+
"body": {
|
| 46 |
+
"answer": answer
|
| 47 |
+
}
|
| 48 |
+
}
|
| 49 |
+
return response
|
| 50 |
+
except Exception as e:
|
| 51 |
+
# Handle any errors
|
| 52 |
+
response = {
|
| 53 |
+
"statusCode": 500,
|
| 54 |
+
"body": {
|
| 55 |
+
"error": str(e)
|
| 56 |
+
}
|
| 57 |
+
}
|
| 58 |
+
return response
|