Create train_script.py
Browse files- train_script.py +111 -0
train_script.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import logging
|
| 3 |
+
from datasets import load_dataset, Dataset
|
| 4 |
+
from sentence_transformers import (
|
| 5 |
+
SentenceTransformer,
|
| 6 |
+
SentenceTransformerTrainer,
|
| 7 |
+
SentenceTransformerTrainingArguments,
|
| 8 |
+
SentenceTransformerModelCardData,
|
| 9 |
+
)
|
| 10 |
+
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
|
| 11 |
+
from sentence_transformers.training_args import BatchSamplers
|
| 12 |
+
from sentence_transformers.evaluation import InformationRetrievalEvaluator, SequentialEvaluator
|
| 13 |
+
from sentence_transformers.models.StaticEmbedding import StaticEmbedding
|
| 14 |
+
|
| 15 |
+
from transformers import AutoTokenizer
|
| 16 |
+
|
| 17 |
+
from sentence_transformers.util import cos_sim
|
| 18 |
+
logging.basicConfig(
|
| 19 |
+
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# 1. Load a model to finetune with 2. (Optional) model card data
|
| 23 |
+
static_embedding = StaticEmbedding(AutoTokenizer.from_pretrained("BEE-spoke-data/wordpiece-tokenizer-32k-en_code-msp"), embedding_dim=1024)
|
| 24 |
+
model = SentenceTransformer(
|
| 25 |
+
modules=[static_embedding],
|
| 26 |
+
model_card_data=SentenceTransformerModelCardData(
|
| 27 |
+
language="en",
|
| 28 |
+
license="apache-2.0",
|
| 29 |
+
model_name="Static Embeddings with BEE-spoke-data/wordpiece-tokenizer-32k-en_code-msp tokenizer finetuned on GooAQ pairs",
|
| 30 |
+
),
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# 3. Load a dataset to finetune on
|
| 34 |
+
dataset = load_dataset("sentence-transformers/gooaq", split="train")
|
| 35 |
+
dataset = dataset.add_column("id", range(len(dataset)))
|
| 36 |
+
dataset_dict = dataset.train_test_split(test_size=10_000, seed=12)
|
| 37 |
+
train_dataset: Dataset = dataset_dict["train"]
|
| 38 |
+
eval_dataset: Dataset = dataset_dict["test"]
|
| 39 |
+
|
| 40 |
+
# 4. Define a loss function
|
| 41 |
+
loss = MultipleNegativesRankingLoss(model)
|
| 42 |
+
loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512, 1024])
|
| 43 |
+
|
| 44 |
+
# 5. (Optional) Specify training arguments
|
| 45 |
+
run_name = "static-BEE-spoke-data-tokenizer-v2-gooaq"
|
| 46 |
+
args = SentenceTransformerTrainingArguments(
|
| 47 |
+
# Required parameter:
|
| 48 |
+
output_dir=f"models/{run_name}",
|
| 49 |
+
# Optional training parameters:
|
| 50 |
+
num_train_epochs=1,
|
| 51 |
+
per_device_train_batch_size=2048,
|
| 52 |
+
per_device_eval_batch_size=2048,
|
| 53 |
+
learning_rate=2e-1,
|
| 54 |
+
warmup_ratio=0.1,
|
| 55 |
+
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
|
| 56 |
+
bf16=True, # Set to True if you have a GPU that supports BF16
|
| 57 |
+
batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
|
| 58 |
+
# Optional tracking/debugging parameters:
|
| 59 |
+
eval_strategy="steps",
|
| 60 |
+
eval_steps=250,
|
| 61 |
+
save_strategy="steps",
|
| 62 |
+
save_steps=250,
|
| 63 |
+
save_total_limit=2,
|
| 64 |
+
logging_steps=100,
|
| 65 |
+
logging_first_step=True,
|
| 66 |
+
run_name=run_name, # Will be used in W&B if `wandb` is installed
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# 6. (Optional) Create an evaluator & evaluate the base model
|
| 70 |
+
# The full corpus, but only the evaluation queries
|
| 71 |
+
random.seed(12)
|
| 72 |
+
queries = dict(zip(eval_dataset["id"], eval_dataset["question"]))
|
| 73 |
+
corpus = (
|
| 74 |
+
{qid: dataset[qid]["answer"] for qid in queries} |
|
| 75 |
+
{qid: dataset[qid]["answer"] for qid in random.sample(range(len(dataset)), 20_000)}
|
| 76 |
+
)
|
| 77 |
+
relevant_docs = {qid: {qid} for qid in eval_dataset["id"]}
|
| 78 |
+
evaluators = []
|
| 79 |
+
for dim in loss.matryoshka_dims:
|
| 80 |
+
evaluators.append(InformationRetrievalEvaluator(
|
| 81 |
+
corpus=corpus,
|
| 82 |
+
queries=queries,
|
| 83 |
+
relevant_docs=relevant_docs,
|
| 84 |
+
show_progress_bar=True,
|
| 85 |
+
name=f"gooaq-{dim}-dev",
|
| 86 |
+
truncate_dim=dim,
|
| 87 |
+
score_functions={"cosine": cos_sim},
|
| 88 |
+
))
|
| 89 |
+
dev_evaluator = SequentialEvaluator(evaluators)
|
| 90 |
+
dev_evaluator(model)
|
| 91 |
+
|
| 92 |
+
# 7. Create a trainer & train
|
| 93 |
+
trainer = SentenceTransformerTrainer(
|
| 94 |
+
model=model,
|
| 95 |
+
args=args,
|
| 96 |
+
train_dataset=train_dataset.remove_columns("id"),
|
| 97 |
+
eval_dataset=eval_dataset.remove_columns("id"),
|
| 98 |
+
loss=loss,
|
| 99 |
+
evaluator=dev_evaluator,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
trainer.train()
|
| 103 |
+
|
| 104 |
+
# (Optional) Evaluate the trained model on the evaluator after training
|
| 105 |
+
dev_evaluator(model)
|
| 106 |
+
|
| 107 |
+
# 8. Save the trained model
|
| 108 |
+
model.save_pretrained(f"models/{run_name}/final")
|
| 109 |
+
|
| 110 |
+
# 9. (Optional) Push it to the Hugging Face Hub
|
| 111 |
+
model.push_to_hub(run_name, private=True)
|