End of training
Browse files
README.md
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
library_name: peft
|
| 4 |
+
tags:
|
| 5 |
+
- trl
|
| 6 |
+
- reward-trainer
|
| 7 |
+
- generated_from_trainer
|
| 8 |
+
metrics:
|
| 9 |
+
- accuracy
|
| 10 |
+
base_model: AI-Sweden-Models/gpt-sw3-1.3b
|
| 11 |
+
model-index:
|
| 12 |
+
- name: gpt1B_reward_test
|
| 13 |
+
results: []
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 17 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 18 |
+
|
| 19 |
+
# gpt1B_reward_test
|
| 20 |
+
|
| 21 |
+
This model is a fine-tuned version of [AI-Sweden-Models/gpt-sw3-1.3b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b) on an unknown dataset.
|
| 22 |
+
It achieves the following results on the evaluation set:
|
| 23 |
+
- Loss: 0.6367
|
| 24 |
+
- Accuracy: 0.6504
|
| 25 |
+
|
| 26 |
+
## Model description
|
| 27 |
+
|
| 28 |
+
More information needed
|
| 29 |
+
|
| 30 |
+
## Intended uses & limitations
|
| 31 |
+
|
| 32 |
+
More information needed
|
| 33 |
+
|
| 34 |
+
## Training and evaluation data
|
| 35 |
+
|
| 36 |
+
More information needed
|
| 37 |
+
|
| 38 |
+
## Training procedure
|
| 39 |
+
|
| 40 |
+
### Training hyperparameters
|
| 41 |
+
|
| 42 |
+
The following hyperparameters were used during training:
|
| 43 |
+
- learning_rate: 3e-05
|
| 44 |
+
- train_batch_size: 2
|
| 45 |
+
- eval_batch_size: 2
|
| 46 |
+
- seed: 42
|
| 47 |
+
- gradient_accumulation_steps: 8
|
| 48 |
+
- total_train_batch_size: 16
|
| 49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 50 |
+
- lr_scheduler_type: linear
|
| 51 |
+
- num_epochs: 1
|
| 52 |
+
|
| 53 |
+
### Training results
|
| 54 |
+
|
| 55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
| 57 |
+
| 0.6878 | 0.04 | 200 | 0.6850 | 0.5791 |
|
| 58 |
+
| 0.6724 | 0.08 | 400 | 0.6740 | 0.6024 |
|
| 59 |
+
| 0.6611 | 0.13 | 600 | 0.6703 | 0.6081 |
|
| 60 |
+
| 0.6435 | 0.17 | 800 | 0.6773 | 0.6036 |
|
| 61 |
+
| 0.6787 | 0.21 | 1000 | 0.6544 | 0.6189 |
|
| 62 |
+
| 0.7166 | 0.25 | 1200 | 0.6697 | 0.6223 |
|
| 63 |
+
| 0.614 | 0.3 | 1400 | 0.6590 | 0.6250 |
|
| 64 |
+
| 0.6279 | 0.34 | 1600 | 0.6422 | 0.6343 |
|
| 65 |
+
| 0.6185 | 0.38 | 1800 | 0.6427 | 0.6389 |
|
| 66 |
+
| 0.5539 | 0.42 | 2000 | 0.6459 | 0.6390 |
|
| 67 |
+
| 0.5988 | 0.47 | 2200 | 0.6485 | 0.6379 |
|
| 68 |
+
| 0.6096 | 0.51 | 2400 | 0.6570 | 0.6439 |
|
| 69 |
+
| 0.5898 | 0.55 | 2600 | 0.6381 | 0.6441 |
|
| 70 |
+
| 0.6366 | 0.59 | 2800 | 0.6479 | 0.6389 |
|
| 71 |
+
| 0.6457 | 0.64 | 3000 | 0.6397 | 0.6490 |
|
| 72 |
+
| 0.6171 | 0.68 | 3200 | 0.6476 | 0.6467 |
|
| 73 |
+
| 0.5262 | 0.72 | 3400 | 0.6506 | 0.6458 |
|
| 74 |
+
| 0.5723 | 0.76 | 3600 | 0.6467 | 0.6471 |
|
| 75 |
+
| 0.6194 | 0.81 | 3800 | 0.6393 | 0.6480 |
|
| 76 |
+
| 0.5946 | 0.85 | 4000 | 0.6375 | 0.6490 |
|
| 77 |
+
| 0.5868 | 0.89 | 4200 | 0.6366 | 0.6503 |
|
| 78 |
+
| 0.5905 | 0.93 | 4400 | 0.6367 | 0.6505 |
|
| 79 |
+
| 0.5651 | 0.97 | 4600 | 0.6367 | 0.6504 |
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
### Framework versions
|
| 83 |
+
|
| 84 |
+
- PEFT 0.8.2
|
| 85 |
+
- Transformers 4.38.1
|
| 86 |
+
- Pytorch 2.2.0+cu118
|
| 87 |
+
- Datasets 2.17.1
|
| 88 |
+
- Tokenizers 0.15.2
|