Delete pipeline.py
Browse files- pipeline.py +0 -376
pipeline.py
DELETED
|
@@ -1,376 +0,0 @@
|
|
| 1 |
-
import random
|
| 2 |
-
from typing import Callable, Dict, List, Optional
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
from tqdm import tqdm
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
-
from diffusers.configuration_utils import ConfigMixin
|
| 8 |
-
|
| 9 |
-
def get_scaled_coeffs():
|
| 10 |
-
beta_min = 0.85
|
| 11 |
-
beta_max = 12.0
|
| 12 |
-
return beta_min**0.5, beta_max**0.5-beta_min**0.5
|
| 13 |
-
def beta(t):
|
| 14 |
-
a, b = get_scaled_coeffs()
|
| 15 |
-
return (a+t*b)**2
|
| 16 |
-
def int_beta(t):
|
| 17 |
-
a, b = get_scaled_coeffs()
|
| 18 |
-
return ((a+b*t)**3-a**3)/(3*b)
|
| 19 |
-
def sigma(t):
|
| 20 |
-
return torch.expm1(int_beta(t))**0.5
|
| 21 |
-
def sigma_orig(t):
|
| 22 |
-
return (-torch.expm1(-int_beta(t)))**0.5
|
| 23 |
-
|
| 24 |
-
class SuperDiffSDXLPipeline(DiffusionPipeline, ConfigMixin):
|
| 25 |
-
"""SuperDiffSDXLPipeline."""
|
| 26 |
-
|
| 27 |
-
def __init__(self, unet: Callable, vae: Callable, text_encoder: Callable, text_encoder_2: Callable, tokenizer: Callable, tokenizer_2: Callable) -> None:
|
| 28 |
-
|
| 29 |
-
"""__init__.
|
| 30 |
-
|
| 31 |
-
Parameters
|
| 32 |
-
----------
|
| 33 |
-
model : Callable
|
| 34 |
-
model
|
| 35 |
-
vae : Callable
|
| 36 |
-
vae
|
| 37 |
-
text_encoder : Callable
|
| 38 |
-
text_encoder
|
| 39 |
-
scheduler : Callable
|
| 40 |
-
scheduler
|
| 41 |
-
tokenizer : Callable
|
| 42 |
-
tokenizer
|
| 43 |
-
kwargs :
|
| 44 |
-
kwargs
|
| 45 |
-
|
| 46 |
-
Returns
|
| 47 |
-
-------
|
| 48 |
-
None
|
| 49 |
-
|
| 50 |
-
"""
|
| 51 |
-
super().__init__()
|
| 52 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 53 |
-
|
| 54 |
-
vae.to(device)
|
| 55 |
-
unet.to(device)
|
| 56 |
-
text_encoder.to(device)
|
| 57 |
-
text_encoder_2.to(device)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
self.register_modules(unet=unet,
|
| 61 |
-
vae=vae,
|
| 62 |
-
text_encoder=text_encoder,
|
| 63 |
-
text_encoder_2=text_encoder_2,
|
| 64 |
-
tokenizer=tokenizer,
|
| 65 |
-
tokenizer_2=tokenizer_2,
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
def prepare_prompt_input(self, prompt_o, prompt_b, batch_size, height, width):
|
| 69 |
-
text_input = self.tokenizer(prompt_o* batch_size, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 70 |
-
text_input_2 = self.tokenizer_2(prompt_o* batch_size, padding="max_length", max_length=self.tokenizer_2.model_max_length, truncation=True, return_tensors="pt")
|
| 71 |
-
with torch.no_grad():
|
| 72 |
-
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device), output_hidden_states=True)
|
| 73 |
-
text_embeddings_2 = self.text_encoder_2(text_input_2.input_ids.to(self.device), output_hidden_states=True)
|
| 74 |
-
prompt_embeds_o = torch.concat((text_embeddings.hidden_states[-2], text_embeddings_2.hidden_states[-2]), dim=-1)
|
| 75 |
-
pooled_prompt_embeds_o = text_embeddings_2[0]
|
| 76 |
-
negative_prompt_embeds = torch.zeros_like(prompt_embeds_o)
|
| 77 |
-
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds_o)
|
| 78 |
-
|
| 79 |
-
text_input = self.tokenizer(prompt_b* batch_size, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 80 |
-
text_input_2 = self.tokenizer_2(prompt_b* batch_size, padding="max_length", max_length=self.tokenizer_2.model_max_length, truncation=True, return_tensors="pt")
|
| 81 |
-
with torch.no_grad():
|
| 82 |
-
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device), output_hidden_states=True)
|
| 83 |
-
text_embeddings_2 = self.text_encoder_2(text_input_2.input_ids.to(self.device), output_hidden_states=True)
|
| 84 |
-
prompt_embeds_b = torch.concat((text_embeddings.hidden_states[-2], text_embeddings_2.hidden_states[-2]), dim=-1)
|
| 85 |
-
pooled_prompt_embeds_b = text_embeddings_2[0]
|
| 86 |
-
add_time_ids_o = torch.tensor([(height,width,0,0,height,width)])
|
| 87 |
-
add_time_ids_b = torch.tensor([(height,width,0,0,height,width)])
|
| 88 |
-
negative_add_time_ids = torch.tensor([(height,width,0,0,height,width)])
|
| 89 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds_o, prompt_embeds_b], dim=0)
|
| 90 |
-
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds_o, pooled_prompt_embeds_b], dim=0)
|
| 91 |
-
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids_o, add_time_ids_b], dim=0)
|
| 92 |
-
|
| 93 |
-
prompt_embeds = prompt_embeds.to(self.device)
|
| 94 |
-
add_text_embeds = add_text_embeds.to(self.device)
|
| 95 |
-
add_time_ids = add_time_ids.to(self.device).repeat(batch_size, 1)
|
| 96 |
-
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
| 97 |
-
return prompt_embeds, added_cond_kwargs
|
| 98 |
-
@torch.no_grad
|
| 99 |
-
def get_batch(self, latents: Callable, nrow: int, ncol: int) -> Callable:
|
| 100 |
-
"""get_batch.
|
| 101 |
-
|
| 102 |
-
Parameters
|
| 103 |
-
----------
|
| 104 |
-
latents : Callable
|
| 105 |
-
latents
|
| 106 |
-
nrow : int
|
| 107 |
-
nrow
|
| 108 |
-
ncol : int
|
| 109 |
-
ncol
|
| 110 |
-
|
| 111 |
-
Returns
|
| 112 |
-
-------
|
| 113 |
-
Callable
|
| 114 |
-
|
| 115 |
-
"""
|
| 116 |
-
image = self.vae.decode(
|
| 117 |
-
latents / self.vae.config.scaling_factor, return_dict=False
|
| 118 |
-
)[0]
|
| 119 |
-
image = (image / 2 + 0.5).clamp(0, 1).squeeze()
|
| 120 |
-
if len(image.shape) < 4:
|
| 121 |
-
image = image.unsqueeze(0)
|
| 122 |
-
image = (image.permute(0, 2, 3, 1) * 255).to(torch.uint8)
|
| 123 |
-
return image
|
| 124 |
-
|
| 125 |
-
@torch.no_grad
|
| 126 |
-
def get_text_embedding(self, prompt: str) -> Callable:
|
| 127 |
-
"""get_text_embedding.
|
| 128 |
-
|
| 129 |
-
Parameters
|
| 130 |
-
----------
|
| 131 |
-
prompt : str
|
| 132 |
-
prompt
|
| 133 |
-
|
| 134 |
-
Returns
|
| 135 |
-
-------
|
| 136 |
-
Callable
|
| 137 |
-
|
| 138 |
-
"""
|
| 139 |
-
text_input = self.tokenizer(
|
| 140 |
-
prompt,
|
| 141 |
-
padding="max_length",
|
| 142 |
-
max_length=self.tokenizer.model_max_length,
|
| 143 |
-
truncation=True,
|
| 144 |
-
return_tensors="pt",
|
| 145 |
-
)
|
| 146 |
-
return self.text_encoder(text_input.input_ids.to(self.device))[0]
|
| 147 |
-
|
| 148 |
-
@torch.no_grad
|
| 149 |
-
def get_vel(self, t: float, sigma: float, latents: Callable, embeddings: Callable):
|
| 150 |
-
"""get_vel.
|
| 151 |
-
|
| 152 |
-
Parameters
|
| 153 |
-
----------
|
| 154 |
-
t : float
|
| 155 |
-
t
|
| 156 |
-
sigma : float
|
| 157 |
-
sigma
|
| 158 |
-
latents : Callable
|
| 159 |
-
latents
|
| 160 |
-
embeddings : Callable
|
| 161 |
-
embeddings
|
| 162 |
-
"""
|
| 163 |
-
def v(_x, _e): return self.model(
|
| 164 |
-
_x / ((sigma**2 + 1) ** 0.5), t, encoder_hidden_states=_e
|
| 165 |
-
).sample
|
| 166 |
-
embeds = torch.cat(embeddings)
|
| 167 |
-
latent_input = latents
|
| 168 |
-
vel = v(latent_input, embeds)
|
| 169 |
-
return vel
|
| 170 |
-
|
| 171 |
-
def preprocess(
|
| 172 |
-
self,
|
| 173 |
-
prompt_1: str,
|
| 174 |
-
prompt_2: str,
|
| 175 |
-
seed: int = None,
|
| 176 |
-
num_inference_steps: int = 1000,
|
| 177 |
-
batch_size: int = 1,
|
| 178 |
-
lift: int = 0.0,
|
| 179 |
-
height: int = 512,
|
| 180 |
-
width: int = 512,
|
| 181 |
-
guidance_scale: int = 7.5,
|
| 182 |
-
) -> Callable:
|
| 183 |
-
"""preprocess.
|
| 184 |
-
|
| 185 |
-
Parameters
|
| 186 |
-
----------
|
| 187 |
-
prompt_1 : str
|
| 188 |
-
prompt_1
|
| 189 |
-
prompt_2 : str
|
| 190 |
-
prompt_2
|
| 191 |
-
seed : int
|
| 192 |
-
seed
|
| 193 |
-
num_inference_steps : int
|
| 194 |
-
num_inference_steps
|
| 195 |
-
batch_size : int
|
| 196 |
-
batch_size
|
| 197 |
-
lift : int
|
| 198 |
-
lift
|
| 199 |
-
height : int
|
| 200 |
-
height
|
| 201 |
-
width : int
|
| 202 |
-
width
|
| 203 |
-
guidance_scale : int
|
| 204 |
-
guidance_scale
|
| 205 |
-
|
| 206 |
-
Returns
|
| 207 |
-
-------
|
| 208 |
-
Callable
|
| 209 |
-
|
| 210 |
-
"""
|
| 211 |
-
# Tokenize the input
|
| 212 |
-
self.batch_size = batch_size
|
| 213 |
-
self.num_inference_steps = num_inference_steps
|
| 214 |
-
self.guidance_scale = guidance_scale
|
| 215 |
-
self.lift = lift
|
| 216 |
-
self.seed = seed
|
| 217 |
-
if self.seed is None:
|
| 218 |
-
self.seed = random.randint(0, 2**32 - 1)
|
| 219 |
-
|
| 220 |
-
#obj_prompt = [prompt_1]
|
| 221 |
-
#bg_prompt = [prompt_2]
|
| 222 |
-
#obj_embeddings = self.get_text_embedding(obj_prompt * batch_size)
|
| 223 |
-
#bg_embeddings = self.get_text_embedding(bg_prompt * batch_size)
|
| 224 |
-
|
| 225 |
-
#uncond_embeddings = self.get_text_embedding([""] * batch_size)
|
| 226 |
-
|
| 227 |
-
generator = torch.cuda.manual_seed(
|
| 228 |
-
self.seed
|
| 229 |
-
) # Seed generator to create the initial latent noise
|
| 230 |
-
latents = torch.randn((batch_size, self.unet.in_channels, height // 8, width // 8), generator=generator, dtype=self.dtype, device=self.device,)
|
| 231 |
-
prompt_embeds, added_cond_kwargs = self.prepare_prompt_input(prompt_1, prompt_2, batch_size, height, width)
|
| 232 |
-
#latents = torch.randn(
|
| 233 |
-
# (batch_size, self.model.config.in_channels, height // 8, width // 8),
|
| 234 |
-
# generator=generator,
|
| 235 |
-
# device=self.device,
|
| 236 |
-
#)
|
| 237 |
-
|
| 238 |
-
#latents_og = latents.clone().detach()
|
| 239 |
-
#latents_uncond_og = latents.clone().detach()
|
| 240 |
-
|
| 241 |
-
#self.scheduler.set_timesteps(num_inference_steps)
|
| 242 |
-
#latents = latents * self.scheduler.init_noise_sigma
|
| 243 |
-
|
| 244 |
-
#latents_uncond = latents.clone().detach()
|
| 245 |
-
return {
|
| 246 |
-
"latents": latents,
|
| 247 |
-
"prompt_embeds": prompt_embeds,
|
| 248 |
-
"added_cond_kwargs": added_cond_kwargs,
|
| 249 |
-
}
|
| 250 |
-
|
| 251 |
-
def _forward(self, model_inputs: Dict) -> Callable:
|
| 252 |
-
"""_forward.
|
| 253 |
-
|
| 254 |
-
Parameters
|
| 255 |
-
----------
|
| 256 |
-
model_inputs : Dict
|
| 257 |
-
model_inputs
|
| 258 |
-
|
| 259 |
-
Returns
|
| 260 |
-
-------
|
| 261 |
-
Callable
|
| 262 |
-
|
| 263 |
-
"""
|
| 264 |
-
latents = model_inputs["latents"]
|
| 265 |
-
prompt_embeds = model_inputs["prompt_embeds"]
|
| 266 |
-
added_cond_kwargs = model_inputs["added_cond_kwargs"]
|
| 267 |
-
|
| 268 |
-
t = torch.tensor(1.0)
|
| 269 |
-
dt = 1.0/self.num_inference_steps
|
| 270 |
-
train_number_steps = 1000
|
| 271 |
-
latents = latents * (sigma(t)**2+1)**0.5
|
| 272 |
-
with torch.no_grad():
|
| 273 |
-
for i in tqdm(range(self.num_inference_steps)):
|
| 274 |
-
latent_model_input = torch.cat([latents] * 3)
|
| 275 |
-
sigma_t = sigma(t)
|
| 276 |
-
dsigma = sigma(t-dt) - sigma_t
|
| 277 |
-
latent_model_input /= (sigma_t**2+1)**0.5
|
| 278 |
-
with torch.no_grad():
|
| 279 |
-
noise_pred = self.unet(latent_model_input, t*train_number_steps, encoder_hidden_states=prompt_embeds, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0]
|
| 280 |
-
|
| 281 |
-
noise_pred_uncond, noise_pred_text_o, noise_pred_text_b = noise_pred.chunk(3)
|
| 282 |
-
|
| 283 |
-
noise = torch.sqrt(2*torch.abs(dsigma)*sigma_t)*torch.randn_like(latents)
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
dx_ind = 2*dsigma*(noise_pred_uncond + self.guidance_scale*(noise_pred_text_b - noise_pred_uncond)) + noise
|
| 287 |
-
kappa = (torch.abs(dsigma)*(noise_pred_text_b-noise_pred_text_o)*(noise_pred_text_b+noise_pred_text_o)).sum((1,2,3))-(dx_ind*((noise_pred_text_o-noise_pred_text_b))).sum((1,2,3))
|
| 288 |
-
kappa /= 2*dsigma*self.guidance_scale*((noise_pred_text_o-noise_pred_text_b)**2).sum((1,2,3))
|
| 289 |
-
noise_pred = noise_pred_uncond + self.guidance_scale*((noise_pred_text_b - noise_pred_uncond) + kappa[:,None,None,None]*(noise_pred_text_o-noise_pred_text_b))
|
| 290 |
-
|
| 291 |
-
latents += 2*dsigma * noise_pred + noise
|
| 292 |
-
t -= dt
|
| 293 |
-
return latents
|
| 294 |
-
|
| 295 |
-
def postprocess(self, latents: Callable) -> Callable:
|
| 296 |
-
"""postprocess.
|
| 297 |
-
|
| 298 |
-
Parameters
|
| 299 |
-
----------
|
| 300 |
-
latents : Callable
|
| 301 |
-
latents
|
| 302 |
-
|
| 303 |
-
Returns
|
| 304 |
-
-------
|
| 305 |
-
Callable
|
| 306 |
-
|
| 307 |
-
"""
|
| 308 |
-
latents = latents/self.vae.config.scaling_factor
|
| 309 |
-
latents = latents.to(torch.float32)
|
| 310 |
-
with torch.no_grad():
|
| 311 |
-
image = self.vae.decode(latents, return_dict=False)[0]
|
| 312 |
-
|
| 313 |
-
image = (image / 2 + 0.5).clamp(0, 1)
|
| 314 |
-
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
| 315 |
-
images = (image * 255).round().astype("uint8")
|
| 316 |
-
return images
|
| 317 |
-
|
| 318 |
-
def __call__(
|
| 319 |
-
self,
|
| 320 |
-
prompt_1: str,
|
| 321 |
-
prompt_2: str,
|
| 322 |
-
seed: int = None,
|
| 323 |
-
num_inference_steps: int = 1000,
|
| 324 |
-
batch_size: int = 1,
|
| 325 |
-
lift: int = 0.0,
|
| 326 |
-
height: int = 1024,
|
| 327 |
-
width: int = 1024,
|
| 328 |
-
guidance_scale: int = 7.5,
|
| 329 |
-
) -> Callable:
|
| 330 |
-
"""__call__.
|
| 331 |
-
|
| 332 |
-
Parameters
|
| 333 |
-
----------
|
| 334 |
-
prompt_1 : str
|
| 335 |
-
prompt_1
|
| 336 |
-
prompt_2 : str
|
| 337 |
-
prompt_2
|
| 338 |
-
seed : int
|
| 339 |
-
seed
|
| 340 |
-
num_inference_steps : int
|
| 341 |
-
num_inference_steps
|
| 342 |
-
batch_size : int
|
| 343 |
-
batch_size
|
| 344 |
-
lift : int
|
| 345 |
-
lift
|
| 346 |
-
height : int
|
| 347 |
-
height
|
| 348 |
-
width : int
|
| 349 |
-
width
|
| 350 |
-
guidance_scale : int
|
| 351 |
-
guidance_scale
|
| 352 |
-
|
| 353 |
-
Returns
|
| 354 |
-
-------
|
| 355 |
-
Callable
|
| 356 |
-
|
| 357 |
-
"""
|
| 358 |
-
# Preprocess inputs
|
| 359 |
-
model_inputs = self.preprocess(
|
| 360 |
-
prompt_1,
|
| 361 |
-
prompt_2,
|
| 362 |
-
seed,
|
| 363 |
-
num_inference_steps,
|
| 364 |
-
batch_size,
|
| 365 |
-
lift,
|
| 366 |
-
height,
|
| 367 |
-
width,
|
| 368 |
-
guidance_scale,
|
| 369 |
-
)
|
| 370 |
-
|
| 371 |
-
# Forward pass through the pipeline
|
| 372 |
-
latents = self._forward(model_inputs)
|
| 373 |
-
|
| 374 |
-
# Postprocess to generate the final output
|
| 375 |
-
images = self.postprocess(latents)
|
| 376 |
-
return images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|