readme: add initial version of model card
Browse filesHi,
This PR add the initial version of model card.
README.md
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- flair
|
| 6 |
+
- token-classification
|
| 7 |
+
- sequence-tagger-model
|
| 8 |
+
base_model: hmteams/teams-base-historic-multilingual-discriminator
|
| 9 |
+
widget:
|
| 10 |
+
- text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι .
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022)
|
| 14 |
+
|
| 15 |
+
This Flair model was fine-tuned on the
|
| 16 |
+
[AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md)
|
| 17 |
+
NER Dataset using hmTEAMS as backbone LM.
|
| 18 |
+
|
| 19 |
+
The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics,
|
| 20 |
+
and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/)
|
| 21 |
+
project.
|
| 22 |
+
|
| 23 |
+
The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`.
|
| 24 |
+
|
| 25 |
+
# Results
|
| 26 |
+
|
| 27 |
+
We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
|
| 28 |
+
|
| 29 |
+
* Batch Sizes: `[8, 4]`
|
| 30 |
+
* Learning Rates: `[3e-05, 5e-05]`
|
| 31 |
+
|
| 32 |
+
And report micro F1-score on development set:
|
| 33 |
+
|
| 34 |
+
| Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. |
|
| 35 |
+
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|
|
| 36 |
+
| bs4-e10-lr3e-05 | [0.8606][1] | [0.8657][2] | [0.8612][3] | [0.8609][4] | [0.8623][5] | 86.21 ± 0.19 |
|
| 37 |
+
| bs8-e10-lr3e-05 | [0.8479][6] | [0.8698][7] | [0.8613][8] | [0.8602][9] | [0.8588][10] | 85.96 ± 0.7 |
|
| 38 |
+
| bs8-e10-lr5e-05 | [0.8547][11] | [0.8558][12] | [0.8568][13] | [0.865][14] | [0.8633][15] | 85.91 ± 0.42 |
|
| 39 |
+
| bs4-e10-lr5e-05 | [0.8571][16] | [0.8432][17] | [0.8595][18] | [0.8656][19] | [0.8455][20] | 85.42 ± 0.85 |
|
| 40 |
+
|
| 41 |
+
[1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
|
| 42 |
+
[2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
|
| 43 |
+
[3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
|
| 44 |
+
[4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
|
| 45 |
+
[5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
|
| 46 |
+
[6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
|
| 47 |
+
[7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
|
| 48 |
+
[8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
|
| 49 |
+
[9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
|
| 50 |
+
[10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
|
| 51 |
+
[11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
|
| 52 |
+
[12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
|
| 53 |
+
[13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
|
| 54 |
+
[14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
|
| 55 |
+
[15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
|
| 56 |
+
[16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
|
| 57 |
+
[17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
|
| 58 |
+
[18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
|
| 59 |
+
[19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
|
| 60 |
+
[20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
|
| 61 |
+
|
| 62 |
+
The [training log](training.log) and TensorBoard logs (only for hmByT5 and hmTEAMS based models) are also uploaded to the model hub.
|
| 63 |
+
|
| 64 |
+
More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
|
| 65 |
+
|
| 66 |
+
# Acknowledgements
|
| 67 |
+
|
| 68 |
+
We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
|
| 69 |
+
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
|
| 70 |
+
|
| 71 |
+
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
|
| 72 |
+
Many Thanks for providing access to the TPUs ❤️
|