Details: https://spacy.io/models/mk#mk_core_news_lg
Macedonian pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
|---|---|
| Name | mk_core_news_lg |
| Version | 3.7.0 |
| spaCy | >=3.7.0,<3.8.0 |
| Default Pipeline | morphologizer, parser, attribute_ruler, lemmatizer, ner |
| Components | morphologizer, parser, senter, attribute_ruler, lemmatizer, ner |
| Vectors | 274587 keys, 274587 unique vectors (300 dimensions) |
| Sources | Macedonian Corpus (Damjan Zlatinov, Melanija Gerasimovska, Borijan Georgievski, Marija Todosovska) spaCy lookups data (Explosion) Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia) (Explosion) |
| License | CC BY-SA 4.0 |
| Author | Explosion |
Label Scheme
View label scheme (54 labels for 3 components)
| Component | Labels |
|---|---|
morphologizer |
POS=PROPN, POS=AUX, POS=ADJ, POS=NOUN, POS=ADP, POS=PUNCT, POS=CONJ, POS=NUM, POS=VERB, POS=PRON, POS=ADV, POS=SCONJ, POS=PART, POS=SYM, _, POS=SPACE, POS=X, POS=INTJ |
parser |
ROOT, advmod, att, aux, cc, dep, det, dobj, iobj, neg, nsubj, pobj, poss, pozm, pozv, prep, punct, relcl |
ner |
CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART |
Accuracy
| Type | Score |
|---|---|
TOKEN_ACC |
100.00 |
TOKEN_P |
100.00 |
TOKEN_R |
100.00 |
TOKEN_F |
100.00 |
SENTS_P |
70.42 |
SENTS_R |
64.94 |
SENTS_F |
67.57 |
DEP_UAS |
67.84 |
DEP_LAS |
52.98 |
ENTS_P |
75.06 |
ENTS_R |
75.06 |
ENTS_F |
75.06 |
POS_ACC |
93.09 |
- Downloads last month
- 9
Evaluation results
- NER Precisionself-reported0.751
- NER Recallself-reported0.751
- NER F Scoreself-reported0.751
- POS (UPOS) Accuracyself-reported0.931
- Unlabeled Attachment Score (UAS)self-reported0.678
- Labeled Attachment Score (LAS)self-reported0.530
- Sentences F-Scoreself-reported0.676