Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,12 @@
|
|
| 1 |
-
# app.py — Voice Clarity Booster
|
| 2 |
-
#
|
| 3 |
-
# - Robust mono conversion (handles [T], [T,C], [C,T]) to prevent 50-byte WAVs.
|
| 4 |
-
# - Output autoplay, NaN/Inf sanitization, tiny-output fallback.
|
| 5 |
|
| 6 |
-
import io
|
| 7 |
import os
|
|
|
|
| 8 |
import tempfile
|
| 9 |
from typing import Tuple, Optional
|
| 10 |
|
| 11 |
-
#
|
| 12 |
import warnings
|
| 13 |
warnings.filterwarnings(
|
| 14 |
"ignore",
|
|
@@ -26,32 +24,47 @@ import soundfile as sf
|
|
| 26 |
import torch
|
| 27 |
import torchaudio
|
| 28 |
|
| 29 |
-
#
|
| 30 |
try:
|
| 31 |
-
# SpeechBrain >= 1.0
|
| 32 |
from speechbrain.inference import SpectralMaskEnhancement
|
| 33 |
-
except Exception: #
|
| 34 |
-
# Older SpeechBrain (<1.0)
|
| 35 |
from speechbrain.pretrained import SpectralMaskEnhancement # type: ignore
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
# -----------------------------
|
| 39 |
-
#
|
| 40 |
# -----------------------------
|
| 41 |
-
_ENHANCER: Optional[SpectralMaskEnhancement] = None
|
| 42 |
_DEVICE = "cpu"
|
|
|
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
-
def
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
_ENHANCER = SpectralMaskEnhancement.from_hparams(
|
| 50 |
source="speechbrain/metricgan-plus-voicebank",
|
| 51 |
savedir="pretrained/metricgan_plus_voicebank",
|
| 52 |
run_opts={"device": _DEVICE},
|
| 53 |
)
|
| 54 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
|
| 57 |
# -----------------------------
|
|
@@ -60,40 +73,28 @@ def _get_enhancer() -> SpectralMaskEnhancement:
|
|
| 60 |
def _to_mono(wav: np.ndarray) -> np.ndarray:
|
| 61 |
"""
|
| 62 |
Ensure mono [T] float32 robustly.
|
| 63 |
-
|
| 64 |
-
Accepts:
|
| 65 |
-
- [T] (mono)
|
| 66 |
-
- [T, C] (samples, channels)
|
| 67 |
-
- [C, T] (channels, samples)
|
| 68 |
-
- Any 2D shape where a dimension <= 8 is 'channels'
|
| 69 |
"""
|
| 70 |
wav = np.asarray(wav, dtype=np.float32)
|
| 71 |
-
|
| 72 |
if wav.ndim == 1:
|
| 73 |
return wav
|
| 74 |
-
|
| 75 |
if wav.ndim == 2:
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
# If one dimension is 1, just squeeze
|
| 79 |
-
if 1 in (T, U):
|
| 80 |
return wav.reshape(-1).astype(np.float32)
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
if
|
| 84 |
-
return wav.mean(axis=1).astype(np.float32) # average across channel axis
|
| 85 |
-
|
| 86 |
-
# If the first dim is small (<= 8), treat it as channels -> [C, T]
|
| 87 |
-
if T <= 8:
|
| 88 |
return wav.mean(axis=0).astype(np.float32)
|
| 89 |
-
|
| 90 |
-
# Fallback: assume [T, C]
|
| 91 |
return wav.mean(axis=1).astype(np.float32)
|
| 92 |
-
|
| 93 |
-
# Higher dims: flatten channels, keep time last if possible
|
| 94 |
return wav.reshape(-1).astype(np.float32)
|
| 95 |
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
def _resample_torch(wav: torch.Tensor, sr_in: int, sr_out: int) -> torch.Tensor:
|
| 98 |
if sr_in == sr_out:
|
| 99 |
return wav
|
|
@@ -107,7 +108,6 @@ def _highpass(wav: torch.Tensor, sr: int, cutoff_hz: float) -> torch.Tensor:
|
|
| 107 |
|
| 108 |
|
| 109 |
def _presence_boost(wav: torch.Tensor, sr: int, gain_db: float) -> torch.Tensor:
|
| 110 |
-
"""Simple presence EQ around ~4.5 kHz."""
|
| 111 |
if abs(gain_db) < 1e-6:
|
| 112 |
return wav
|
| 113 |
center = 4500.0
|
|
@@ -116,74 +116,119 @@ def _presence_boost(wav: torch.Tensor, sr: int, gain_db: float) -> torch.Tensor:
|
|
| 116 |
|
| 117 |
|
| 118 |
def _limit_peak(wav: torch.Tensor, target_dbfs: float = -1.0) -> torch.Tensor:
|
| 119 |
-
"""Peak-normalize to target dBFS and hard-limit to [-1, 1]."""
|
| 120 |
target_amp = 10.0 ** (target_dbfs / 20.0)
|
| 121 |
peak = torch.max(torch.abs(wav)).item()
|
| 122 |
if peak > 0:
|
| 123 |
-
|
| 124 |
-
wav = wav * scale
|
| 125 |
return torch.clamp(wav, -1.0, 1.0)
|
| 126 |
|
| 127 |
|
| 128 |
-
def
|
| 129 |
-
"""
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
|
| 133 |
def _enhance_numpy_audio(
|
| 134 |
audio: Tuple[int, np.ndarray],
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
| 137 |
out_sr: Optional[int] = None,
|
| 138 |
) -> Tuple[int, np.ndarray]:
|
| 139 |
"""
|
| 140 |
-
Core pipeline used by the Gradio UI.
|
| 141 |
Input: (sr, np.float32 [T] or [T,C])
|
| 142 |
Returns: (sr_out, np.float32 [T])
|
| 143 |
"""
|
| 144 |
sr_in, wav_np = audio
|
| 145 |
-
wav_mono = _to_mono(wav_np)
|
| 146 |
|
| 147 |
-
# Guard:
|
| 148 |
-
if wav_mono.size <
|
| 149 |
-
# Return a short silent buffer at original SR to avoid empty files
|
| 150 |
return sr_in, np.zeros(1600 if sr_in else 1600, dtype=np.float32)
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
enh = _get_enhancer()
|
| 156 |
-
wav_16k = _resample_torch(wav_t, sr_in, 16000)
|
| 157 |
|
| 158 |
-
# Enhance via file path API for broad codec compatibility
|
| 159 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_in:
|
| 160 |
sf.write(tmp_in.name, wav_16k.squeeze(0).numpy(), 16000, subtype="PCM_16")
|
| 161 |
tmp_in.flush()
|
| 162 |
-
|
| 163 |
-
try:
|
| 164 |
-
os.remove(tmp_in.name)
|
| 165 |
-
except Exception:
|
| 166 |
-
pass
|
| 167 |
-
|
| 168 |
-
# Optional polish: high-pass & presence EQ + peak limit
|
| 169 |
-
clean = _highpass(clean, 16000, lowcut_hz)
|
| 170 |
-
clean = _presence_boost(clean, 16000, presence_db)
|
| 171 |
-
clean = _limit_peak(clean, target_dbfs=-1.0)
|
| 172 |
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
sr_out = sr_in if (out_sr is None or out_sr <= 0) else int(out_sr)
|
| 175 |
-
|
|
|
|
| 176 |
|
| 177 |
-
#
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
-
#
|
| 181 |
-
if
|
| 182 |
-
|
| 183 |
-
fallback = _resample_torch(torch.from_numpy(fallback).unsqueeze(0), 16000, sr_out).squeeze(0).numpy().astype(np.float32)
|
| 184 |
-
return sr_out, fallback
|
| 185 |
|
| 186 |
-
return sr_out,
|
| 187 |
|
| 188 |
|
| 189 |
# -----------------------------
|
|
@@ -191,6 +236,8 @@ def _enhance_numpy_audio(
|
|
| 191 |
# -----------------------------
|
| 192 |
def gradio_enhance(
|
| 193 |
audio: Tuple[int, np.ndarray],
|
|
|
|
|
|
|
| 194 |
presence_db: float,
|
| 195 |
lowcut_hz: float,
|
| 196 |
output_sr: str,
|
|
@@ -201,25 +248,39 @@ def gradio_enhance(
|
|
| 201 |
if output_sr in {"44100", "48000"}:
|
| 202 |
out_sr = int(output_sr)
|
| 203 |
sr_out, enhanced = _enhance_numpy_audio(
|
| 204 |
-
audio,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
)
|
| 206 |
return (sr_out, enhanced)
|
| 207 |
|
| 208 |
|
| 209 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 210 |
-
gr.Markdown("## Voice Clarity Booster
|
| 211 |
with gr.Row():
|
| 212 |
with gr.Column():
|
| 213 |
in_audio = gr.Audio(
|
| 214 |
sources=["upload", "microphone"],
|
| 215 |
type="numpy",
|
| 216 |
-
label="Input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
)
|
| 218 |
presence = gr.Slider(
|
| 219 |
-
minimum=-12, maximum=12, value=
|
| 220 |
)
|
| 221 |
lowcut = gr.Slider(
|
| 222 |
-
minimum=0, maximum=200, value=
|
| 223 |
)
|
| 224 |
out_sr = gr.Radio(
|
| 225 |
choices=["Original", "44100", "48000"],
|
|
@@ -230,7 +291,11 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 230 |
with gr.Column():
|
| 231 |
out_audio = gr.Audio(type="numpy", label="Enhanced", autoplay=True)
|
| 232 |
|
| 233 |
-
btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
-
#
|
| 236 |
demo.launch()
|
|
|
|
| 1 |
+
# app.py — Voice Clarity Booster with mode switch + dry/wet mix
|
| 2 |
+
# Modes: MetricGAN+ (denoise) | SepFormer (dereverb+denoise) | Bypass (EQ only)
|
|
|
|
|
|
|
| 3 |
|
|
|
|
| 4 |
import os
|
| 5 |
+
import io
|
| 6 |
import tempfile
|
| 7 |
from typing import Tuple, Optional
|
| 8 |
|
| 9 |
+
# --- Quiet noisy deprecation warnings (optional) ---
|
| 10 |
import warnings
|
| 11 |
warnings.filterwarnings(
|
| 12 |
"ignore",
|
|
|
|
| 24 |
import torch
|
| 25 |
import torchaudio
|
| 26 |
|
| 27 |
+
# Prefer new SpeechBrain API; fall back for older versions
|
| 28 |
try:
|
|
|
|
| 29 |
from speechbrain.inference import SpectralMaskEnhancement
|
| 30 |
+
except Exception: # < 1.0
|
|
|
|
| 31 |
from speechbrain.pretrained import SpectralMaskEnhancement # type: ignore
|
| 32 |
|
| 33 |
+
try:
|
| 34 |
+
# SepFormer enhancement model (WHAMR) via separation interface
|
| 35 |
+
from speechbrain.inference import SepformerSeparation
|
| 36 |
+
except Exception:
|
| 37 |
+
from speechbrain.pretrained import SepformerSeparation # type: ignore
|
| 38 |
+
|
| 39 |
|
| 40 |
# -----------------------------
|
| 41 |
+
# Cached models
|
| 42 |
# -----------------------------
|
|
|
|
| 43 |
_DEVICE = "cpu"
|
| 44 |
+
_ENHANCER_METRICGAN: Optional[SpectralMaskEnhancement] = None
|
| 45 |
+
_ENHANCER_SEPFORMER: Optional[SepformerSeparation] = None
|
| 46 |
|
| 47 |
|
| 48 |
+
def _get_metricgan() -> SpectralMaskEnhancement:
|
| 49 |
+
global _ENHANCER_METRICGAN
|
| 50 |
+
if _ENHANCER_METRICGAN is None:
|
| 51 |
+
_ENHANCER_METRICGAN = SpectralMaskEnhancement.from_hparams(
|
|
|
|
| 52 |
source="speechbrain/metricgan-plus-voicebank",
|
| 53 |
savedir="pretrained/metricgan_plus_voicebank",
|
| 54 |
run_opts={"device": _DEVICE},
|
| 55 |
)
|
| 56 |
+
return _ENHANCER_METRICGAN
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def _get_sepformer() -> SepformerSeparation:
|
| 60 |
+
global _ENHANCER_SEPFORMER
|
| 61 |
+
if _ENHANCER_SEPFORMER is None:
|
| 62 |
+
_ENHANCER_SEPFORMER = SepformerSeparation.from_hparams(
|
| 63 |
+
source="speechbrain/sepformer-whamr-enhancement",
|
| 64 |
+
savedir="pretrained/sepformer_whamr_enh",
|
| 65 |
+
run_opts={"device": _DEVICE},
|
| 66 |
+
)
|
| 67 |
+
return _ENHANCER_SEPFORMER
|
| 68 |
|
| 69 |
|
| 70 |
# -----------------------------
|
|
|
|
| 73 |
def _to_mono(wav: np.ndarray) -> np.ndarray:
|
| 74 |
"""
|
| 75 |
Ensure mono [T] float32 robustly.
|
| 76 |
+
Accepts [T], [T,C], [C,T]; picks the 'channels' axis if <=8.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
"""
|
| 78 |
wav = np.asarray(wav, dtype=np.float32)
|
|
|
|
| 79 |
if wav.ndim == 1:
|
| 80 |
return wav
|
|
|
|
| 81 |
if wav.ndim == 2:
|
| 82 |
+
t, u = wav.shape
|
| 83 |
+
if 1 in (t, u):
|
|
|
|
|
|
|
| 84 |
return wav.reshape(-1).astype(np.float32)
|
| 85 |
+
if u <= 8: # [T, C]
|
| 86 |
+
return wav.mean(axis=1).astype(np.float32)
|
| 87 |
+
if t <= 8: # [C, T]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
return wav.mean(axis=0).astype(np.float32)
|
|
|
|
|
|
|
| 89 |
return wav.mean(axis=1).astype(np.float32)
|
| 90 |
+
# higher dims: fall back
|
|
|
|
| 91 |
return wav.reshape(-1).astype(np.float32)
|
| 92 |
|
| 93 |
|
| 94 |
+
def _sanitize(mono: np.ndarray) -> np.ndarray:
|
| 95 |
+
return np.nan_to_num(mono, nan=0.0, posinf=0.0, neginf=0.0).astype(np.float32)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
def _resample_torch(wav: torch.Tensor, sr_in: int, sr_out: int) -> torch.Tensor:
|
| 99 |
if sr_in == sr_out:
|
| 100 |
return wav
|
|
|
|
| 108 |
|
| 109 |
|
| 110 |
def _presence_boost(wav: torch.Tensor, sr: int, gain_db: float) -> torch.Tensor:
|
|
|
|
| 111 |
if abs(gain_db) < 1e-6:
|
| 112 |
return wav
|
| 113 |
center = 4500.0
|
|
|
|
| 116 |
|
| 117 |
|
| 118 |
def _limit_peak(wav: torch.Tensor, target_dbfs: float = -1.0) -> torch.Tensor:
|
|
|
|
| 119 |
target_amp = 10.0 ** (target_dbfs / 20.0)
|
| 120 |
peak = torch.max(torch.abs(wav)).item()
|
| 121 |
if peak > 0:
|
| 122 |
+
wav = wav * min(1.0, target_amp / peak)
|
|
|
|
| 123 |
return torch.clamp(wav, -1.0, 1.0)
|
| 124 |
|
| 125 |
|
| 126 |
+
def _align_lengths(a: np.ndarray, b: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
| 127 |
+
"""Pad/crop to same length so we can mix dry/wet safely."""
|
| 128 |
+
n = min(len(a), len(b))
|
| 129 |
+
return a[:n], b[:n]
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# -----------------------------
|
| 133 |
+
# Core pipeline
|
| 134 |
+
# -----------------------------
|
| 135 |
+
def _run_metricgan(clean_16k_path: str) -> torch.Tensor:
|
| 136 |
+
enh = _get_metricgan()
|
| 137 |
+
with torch.no_grad():
|
| 138 |
+
out = enh.enhance_file(clean_16k_path) # [1, T] float32 -1..1
|
| 139 |
+
return out
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def _run_sepformer(clean_16k_path: str) -> torch.Tensor:
|
| 143 |
+
sep = _get_sepformer()
|
| 144 |
+
with torch.no_grad():
|
| 145 |
+
# Some SB versions return [n_src, T]; others [1, T]
|
| 146 |
+
out = sep.separate_file(path=clean_16k_path)
|
| 147 |
+
# Normalize shape to [1, T]
|
| 148 |
+
if isinstance(out, torch.Tensor):
|
| 149 |
+
if out.dim() == 1:
|
| 150 |
+
out = out.unsqueeze(0)
|
| 151 |
+
elif out.dim() == 2 and out.shape[0] > 1:
|
| 152 |
+
out = out[:1, :] # pick primary enhanced speech
|
| 153 |
+
return out
|
| 154 |
+
# If older API returns numpy or list, convert:
|
| 155 |
+
if hasattr(out, "numpy"):
|
| 156 |
+
t = torch.from_numpy(out)
|
| 157 |
+
if t.dim() == 1:
|
| 158 |
+
t = t.unsqueeze(0)
|
| 159 |
+
elif t.dim() == 2 and t.shape[0] > 1:
|
| 160 |
+
t = t[:1, :]
|
| 161 |
+
return t
|
| 162 |
+
if isinstance(out, (list, tuple)):
|
| 163 |
+
t = torch.tensor(out[0] if isinstance(out[0], (np.ndarray, list)) else out, dtype=torch.float32)
|
| 164 |
+
if t.dim() == 1:
|
| 165 |
+
t = t.unsqueeze(0)
|
| 166 |
+
return t
|
| 167 |
+
raise RuntimeError("Unexpected SepFormer output type")
|
| 168 |
|
| 169 |
|
| 170 |
def _enhance_numpy_audio(
|
| 171 |
audio: Tuple[int, np.ndarray],
|
| 172 |
+
mode: str = "MetricGAN+ (denoise)",
|
| 173 |
+
dry_wet: float = 1.0, # 0..1 (1=fully processed)
|
| 174 |
+
presence_db: float = 0.0, # default 0 for safer tone
|
| 175 |
+
lowcut_hz: float = 0.0, # default 0 (off)
|
| 176 |
out_sr: Optional[int] = None,
|
| 177 |
) -> Tuple[int, np.ndarray]:
|
| 178 |
"""
|
|
|
|
| 179 |
Input: (sr, np.float32 [T] or [T,C])
|
| 180 |
Returns: (sr_out, np.float32 [T])
|
| 181 |
"""
|
| 182 |
sr_in, wav_np = audio
|
| 183 |
+
wav_mono = _sanitize(_to_mono(wav_np))
|
| 184 |
|
| 185 |
+
# Guard: tiny input
|
| 186 |
+
if wav_mono.size < 32:
|
|
|
|
| 187 |
return sr_in, np.zeros(1600 if sr_in else 1600, dtype=np.float32)
|
| 188 |
|
| 189 |
+
dry_t = torch.from_numpy(wav_mono).unsqueeze(0) # [1, T @ sr_in]
|
| 190 |
+
# Prepare 16k mono file for models
|
| 191 |
+
wav_16k = _resample_torch(dry_t, sr_in, 16000)
|
|
|
|
|
|
|
| 192 |
|
|
|
|
| 193 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_in:
|
| 194 |
sf.write(tmp_in.name, wav_16k.squeeze(0).numpy(), 16000, subtype="PCM_16")
|
| 195 |
tmp_in.flush()
|
| 196 |
+
path_16k = tmp_in.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
+
try:
|
| 199 |
+
if mode.startswith("MetricGAN"):
|
| 200 |
+
proc = _run_metricgan(path_16k) # [1, T@16k]
|
| 201 |
+
elif mode.startswith("SepFormer"):
|
| 202 |
+
proc = _run_sepformer(path_16k) # [1, T@16k]
|
| 203 |
+
else: # Bypass (EQ only)
|
| 204 |
+
proc = wav_16k
|
| 205 |
+
finally:
|
| 206 |
+
try:
|
| 207 |
+
os.remove(path_16k)
|
| 208 |
+
except Exception:
|
| 209 |
+
pass
|
| 210 |
+
|
| 211 |
+
# Subtle polish (applied to processed only)
|
| 212 |
+
proc = _highpass(proc, 16000, lowcut_hz)
|
| 213 |
+
proc = _presence_boost(proc, 16000, presence_db)
|
| 214 |
+
proc = _limit_peak(proc, target_dbfs=-1.0)
|
| 215 |
+
|
| 216 |
+
# Resample both to output rate for mixing & export
|
| 217 |
sr_out = sr_in if (out_sr is None or out_sr <= 0) else int(out_sr)
|
| 218 |
+
proc_out = _resample_torch(proc, 16000, sr_out).squeeze(0).numpy().astype(np.float32)
|
| 219 |
+
dry_out = _resample_torch(dry_t, sr_in, sr_out).squeeze(0).numpy().astype(np.float32)
|
| 220 |
|
| 221 |
+
# Align and mix
|
| 222 |
+
proc_out, dry_out = _align_lengths(proc_out, dry_out)
|
| 223 |
+
dry_wet = float(np.clip(dry_wet, 0.0, 1.0))
|
| 224 |
+
mixed = (1.0 - (1.0 - dry_wet)) * proc_out + (1.0 - dry_wet) * dry_out # equivalent to dry*(1-dw) + proc*dw
|
| 225 |
+
mixed = _sanitize(mixed)
|
| 226 |
|
| 227 |
+
# Safety: if somehow too tiny, fall back to dry
|
| 228 |
+
if mixed.size < 160:
|
| 229 |
+
return sr_out, dry_out
|
|
|
|
|
|
|
| 230 |
|
| 231 |
+
return sr_out, mixed
|
| 232 |
|
| 233 |
|
| 234 |
# -----------------------------
|
|
|
|
| 236 |
# -----------------------------
|
| 237 |
def gradio_enhance(
|
| 238 |
audio: Tuple[int, np.ndarray],
|
| 239 |
+
mode: str,
|
| 240 |
+
dry_wet_pct: float,
|
| 241 |
presence_db: float,
|
| 242 |
lowcut_hz: float,
|
| 243 |
output_sr: str,
|
|
|
|
| 248 |
if output_sr in {"44100", "48000"}:
|
| 249 |
out_sr = int(output_sr)
|
| 250 |
sr_out, enhanced = _enhance_numpy_audio(
|
| 251 |
+
audio,
|
| 252 |
+
mode=mode,
|
| 253 |
+
dry_wet=dry_wet_pct / 100.0,
|
| 254 |
+
presence_db=float(presence_db),
|
| 255 |
+
lowcut_hz=float(lowcut_hz),
|
| 256 |
+
out_sr=out_sr,
|
| 257 |
)
|
| 258 |
return (sr_out, enhanced)
|
| 259 |
|
| 260 |
|
| 261 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 262 |
+
gr.Markdown("## Voice Clarity Booster")
|
| 263 |
with gr.Row():
|
| 264 |
with gr.Column():
|
| 265 |
in_audio = gr.Audio(
|
| 266 |
sources=["upload", "microphone"],
|
| 267 |
type="numpy",
|
| 268 |
+
label="Input",
|
| 269 |
+
)
|
| 270 |
+
mode = gr.Radio(
|
| 271 |
+
choices=["MetricGAN+ (denoise)", "SepFormer (dereverb+denoise)", "Bypass (EQ only)"],
|
| 272 |
+
value="MetricGAN+ (denoise)",
|
| 273 |
+
label="Mode",
|
| 274 |
+
)
|
| 275 |
+
dry_wet = gr.Slider(
|
| 276 |
+
minimum=0, maximum=100, value=85, step=1,
|
| 277 |
+
label="Dry/Wet Mix (%) — lower to reduce artifacts"
|
| 278 |
)
|
| 279 |
presence = gr.Slider(
|
| 280 |
+
minimum=-12, maximum=12, value=0, step=0.5, label="Presence Boost (dB)"
|
| 281 |
)
|
| 282 |
lowcut = gr.Slider(
|
| 283 |
+
minimum=0, maximum=200, value=0, step=5, label="Low-Cut (Hz)"
|
| 284 |
)
|
| 285 |
out_sr = gr.Radio(
|
| 286 |
choices=["Original", "44100", "48000"],
|
|
|
|
| 291 |
with gr.Column():
|
| 292 |
out_audio = gr.Audio(type="numpy", label="Enhanced", autoplay=True)
|
| 293 |
|
| 294 |
+
btn.click(
|
| 295 |
+
gradio_enhance,
|
| 296 |
+
inputs=[in_audio, mode, dry_wet, presence, lowcut, out_sr],
|
| 297 |
+
outputs=[out_audio],
|
| 298 |
+
)
|
| 299 |
|
| 300 |
+
# Start server (Hugging Face Spaces expects this unguarded)
|
| 301 |
demo.launch()
|