File size: 7,007 Bytes
d24798b 0b16dd0 d24798b 0b16dd0 d24798b 0b929da d24798b 0b16dd0 d24798b 0b929da 0b16dd0 0b929da 98b6850 0b929da 0b16dd0 0b929da 98b6850 0b929da 0b16dd0 0b929da 98b6850 0b16dd0 98b6850 0b16dd0 98b6850 0b929da 0b16dd0 d24798b 0b16dd0 d24798b 98b6850 d24798b 0b16dd0 0b929da d24798b 0b16dd0 d24798b 0b16dd0 d24798b 0b16dd0 d24798b 0b16dd0 d24798b 0b929da 0b16dd0 d24798b 0b929da d24798b 0b16dd0 d24798b 0b16dd0 0b929da d24798b 0b929da d24798b 0b16dd0 d24798b 0b929da d24798b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import datetime as dt
import pandas as pd
import torch
import gradio as gr
import yfinance as yf
from chronos import BaseChronosPipeline # pip: chronos-forecasting
# =============================
# Chronos ๋ชจ๋ธ ์บ์/๋ก๋
# =============================
_PIPELINE_CACHE = {}
def get_pipeline(model_id: str, device: str = "cpu"):
key = (model_id, device)
if key not in _PIPELINE_CACHE:
_PIPELINE_CACHE[key] = BaseChronosPipeline.from_pretrained(
model_id,
device_map=device, # "cpu" / "cuda"
torch_dtype=torch.float32 if device == "cpu" else torch.bfloat16,
)
return _PIPELINE_CACHE[key]
# =============================
# yfinance ์ ์ฉ ๊ฒฌ๊ณ ๋ก๋
# =============================
def load_close_series(ticker: str, start: str, end: str, interval: str = "1d"):
"""
yfinance๋ง ์ฌ์ฉ.
1) Ticker().history(start/end)
2) download(start/end, repair=True)
3) period ๊ธฐ๋ฐ ํด๋ฐฑ:
- 1d โ ["max", "10y", "5y", "2y", "1y"]
- 1h โ ["730d", "365d", "60d"]
- 30m/15m/5m โ ["60d", "30d", "14d"]
"""
ticker = ticker.strip().upper()
# ๋ ์ง ๋ณด์
_start = start or "2014-09-17" # BTC-USD ํ์คํ ๋ฆฌ ์์ ๊ทผ์ฒ
_end = end or dt.date.today().isoformat()
try:
sdt = pd.to_datetime(_start)
edt = pd.to_datetime(_end)
if edt < sdt:
sdt, edt = edt, sdt # ๋ค๋ฐ๋ ๊ฒฝ์ฐ ๊ตํ
_start, _end = sdt.date().isoformat(), edt.date().isoformat()
except Exception:
pass # ํ์ฑ ์คํจํด๋ ๋ฐ์ period ํด๋ฐฑ์ด ์ปค๋ฒ
def _extract_close(df):
if df is None or df.empty:
return None
c = df.get("Close")
if c is None:
return None
c = c.dropna().astype(float)
return c if not c.empty else None
# 1) history(start/end)
try:
tk = yf.Ticker(ticker)
df = tk.history(start=_start, end=_end, interval=interval, auto_adjust=True, actions=False)
s = _extract_close(df)
if s is not None:
return s
except Exception:
pass
# 2) download(start/end) + repair=True
try:
df = yf.download(
ticker, start=_start, end=_end, interval=interval,
progress=False, threads=False, repair=True
)
s = _extract_close(df)
if s is not None:
return s
except Exception:
pass
# 3) period ํด๋ฐฑ
if interval == "1d":
period_candidates = ["max", "10y", "5y", "2y", "1y"]
elif interval == "1h":
period_candidates = ["730d", "365d", "60d"] # 1์๊ฐ๋ด์ ๊ณผ๊ฑฐ ์ ํ ํผ
else: # 30m/15m/5m ๋ฑ ๋ถ๋ด
period_candidates = ["60d", "30d", "14d"] # ๋ถ๋ด์ ๋ณดํต 60~30์ผ ์ด๋ด๋ง ๊ฐ๋ฅ
for per in period_candidates:
# Ticker().history(period=โฆ)
try:
df = tk.history(period=per, interval=interval, auto_adjust=True, actions=False)
s = _extract_close(df)
if s is not None:
return s
except Exception:
pass
# download(period=โฆ)
try:
df = yf.download(
ticker, period=per, interval=interval,
progress=False, threads=False, repair=True
)
s = _extract_close(df)
if s is not None:
return s
except Exception:
pass
raise ValueError(
"yfinance์์ ๋ฐ์ดํฐ๋ฅผ ๊ฐ์ ธ์ค์ง ๋ชปํ์ต๋๋ค. "
"๊ฐ๊ฒฉ(interval)์ด๋ ๊ธฐ๊ฐ(start/end ํน์ period)์ ์กฐ์ ํด ๋ค์ ์๋ํด ๋ณด์ธ์."
)
# =============================
# ์์ธก ํจ์ (Gradio ํธ๋ค๋ฌ)
# =============================
def run_forecast(ticker, start_date, end_date, horizon, model_id, device, interval):
try:
series = load_close_series(ticker, start_date, end_date, interval)
except Exception as e:
# Gradio v4: Plot.update ์์ โ None ๋ฐํ
return None, pd.DataFrame(), f"๋ฐ์ดํฐ ๋ก๋ฉ ์ค๋ฅ: {e}"
pipe = get_pipeline(model_id, device)
H = int(horizon)
# Chronos ์
๋ ฅ: 1D ํ
์ (float)
context = torch.tensor(series.values, dtype=torch.float32)
# ์์ธก: (num_series=1, num_quantiles=3, H) with q=[0.1, 0.5, 0.9]
preds = pipe.predict(context=context, prediction_length=H)[0]
q10, q50, q90 = preds[0], preds[1], preds[2]
# ํ ๋ฐ์ดํฐ
df_fcst = pd.DataFrame(
{"q10": q10.numpy(), "q50": q50.numpy(), "q90": q90.numpy()},
index=pd.RangeIndex(1, H + 1, name="step"),
)
# ๋ฏธ๋ x์ถ: intervalโpandas freq ๋งคํ
import matplotlib.pyplot as plt
freq_map = {"1d": "D", "1h": "H", "30m": "30T", "15m": "15T", "5m": "5T"}
freq = freq_map.get(interval, "D")
future_index = pd.date_range(series.index[-1], periods=H + 1, freq=freq)[1:]
# ๊ทธ๋ํ
fig = plt.figure(figsize=(10, 4))
plt.plot(series.index, series.values, label="history")
plt.plot(future_index, q50.numpy(), label="forecast(q50)")
plt.fill_between(future_index, q10.numpy(), q90.numpy(), alpha=0.2, label="q10โq90")
plt.title(f"{ticker} forecast by Chronos-Bolt ({interval}, H={H})")
plt.legend()
plt.tight_layout()
note = "โป ๋ฐ๋ชจ ๋ชฉ์ ์
๋๋ค. ํฌ์ ํ๋จ์ ์ฑ
์์ ๋ณธ์ธ์๊ฒ ์์ต๋๋ค."
return fig, df_fcst, note
# =============================
# Gradio UI
# =============================
with gr.Blocks(title="Chronos Stock/Crypto Forecast") as demo:
gr.Markdown("# Chronos ์ฃผ๊ฐยทํฌ๋ฆฝํ ์์ธก ๋ฐ๋ชจ")
with gr.Row():
ticker = gr.Textbox(value="BTC-USD", label="ํฐ์ปค (์: AAPL, MSFT, 005930.KS, BTC-USD)")
horizon = gr.Slider(5, 365, value=90, step=1, label="์์ธก ์คํ
H (๊ฐ๊ฒฉ ๋จ์์ ๋์ผ)")
with gr.Row():
start = gr.Textbox(value="2014-09-17", label="์์์ผ (YYYY-MM-DD)")
end = gr.Textbox(value=dt.date.today().isoformat(), label="์ข
๋ฃ์ผ (YYYY-MM-DD)")
with gr.Row():
model_id = gr.Dropdown(
choices=[
"amazon/chronos-bolt-tiny",
"amazon/chronos-bolt-mini",
"amazon/chronos-bolt-small",
"amazon/chronos-bolt-base",
],
value="amazon/chronos-bolt-small",
label="๋ชจ๋ธ"
)
device = gr.Dropdown(choices=["cpu"], value="cpu", label="๋๋ฐ์ด์ค")
interval = gr.Dropdown(
choices=["1d", "1h", "30m", "15m", "5m"],
value="1d",
label="๊ฐ๊ฒฉ"
)
btn = gr.Button("์์ธก ์คํ")
plot = gr.Plot(label="History + Forecast")
table = gr.Dataframe(label="์์ธก ๊ฒฐ๊ณผ (๋ถ์์)")
note = gr.Markdown()
btn.click(
fn=run_forecast,
inputs=[ticker, start, end, horizon, model_id, device, interval],
outputs=[plot, table, note]
)
if __name__ == "__main__":
demo.launch()
|