Spaces:
Runtime error
Runtime error
Create chronos-gradio.py
Browse files- chronos-gradio.py +59 -0
chronos-gradio.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from chronos import ChronosPipeline
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
# 从 Hugging Face 加载模型
|
| 8 |
+
# model_name = "amazon/chronos-t5-small" # 替换为你在 Hugging Face 上的模型名称
|
| 9 |
+
# model = AutoModelForConditionalGeneration.from_pretrained(model_name)
|
| 10 |
+
# model.eval()
|
| 11 |
+
model = ChronosPipeline.from_pretrained(
|
| 12 |
+
"amazon/chronos-t5-small",
|
| 13 |
+
device_map="cuda",
|
| 14 |
+
torch_dtype=torch.bfloat16,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
def predict_with_chronos(input_data):
|
| 18 |
+
prediction = model.predict(
|
| 19 |
+
context=input_data,
|
| 20 |
+
prediction_length=24,
|
| 21 |
+
num_samples=1
|
| 22 |
+
)
|
| 23 |
+
return np.round(prediction.mean(axis=0).squeeze().cpu().numpy()).astype(int)
|
| 24 |
+
|
| 25 |
+
def predict_from_csv(csv_file):
|
| 26 |
+
df = pd.read_csv(csv_file.name)
|
| 27 |
+
|
| 28 |
+
raw_values = pd.to_numeric(df['value'], errors='coerce').dropna().values
|
| 29 |
+
print(raw_values)
|
| 30 |
+
print('输入数据长度为:',len(raw_values))
|
| 31 |
+
input_data = torch.tensor(
|
| 32 |
+
raw_values.astype(np.float32)
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
predictions = predict_with_chronos(input_data)
|
| 36 |
+
predictions = np.asarray(predictions).ravel()
|
| 37 |
+
|
| 38 |
+
forecast_index = range(1, len(predictions)+1)
|
| 39 |
+
|
| 40 |
+
assert len(forecast_index) == len(predictions), "数组长度不一致"
|
| 41 |
+
|
| 42 |
+
output_df = pd.DataFrame({
|
| 43 |
+
'period': forecast_index,
|
| 44 |
+
'value': predictions
|
| 45 |
+
})
|
| 46 |
+
|
| 47 |
+
output_path = "/tmp/predictions.csv"
|
| 48 |
+
output_df.to_csv(output_path, index=False)
|
| 49 |
+
return output_path
|
| 50 |
+
|
| 51 |
+
iface = gr.Interface(
|
| 52 |
+
fn=predict_from_csv,
|
| 53 |
+
inputs=gr.File(label="上传包含时序数据的 CSV 文件"),
|
| 54 |
+
outputs=gr.File(label="预测结果下载", file_count="single"),
|
| 55 |
+
title="Chronos时序预测",
|
| 56 |
+
description="上传包含时序数据的 CSV 文件,获取未来24步预测结果。"
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
iface.launch()
|