Spaces:
Runtime error
Runtime error
Vishnu Sarukkai
commited on
Commit
·
44549ff
1
Parent(s):
bcf4913
First commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, EulerAncestralDiscreteScheduler
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers.utils import load_image
|
| 5 |
+
import numpy as np
|
| 6 |
+
from controlnet_aux import HEDdetector
|
| 7 |
+
import PIL
|
| 8 |
+
from PIL import Image, ImageFilter
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
|
| 11 |
+
negative_prompt = ""
|
| 12 |
+
device = 'cpu'
|
| 13 |
+
controlnet = ControlNetModel.from_pretrained("vsanimator/sketchcomplete", torch_dtype=torch.float16).to(device)
|
| 14 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 15 |
+
"runwayml/stable-diffusion-v1-5",
|
| 16 |
+
controlnet=controlnet, torch_dtype=torch.float16
|
| 17 |
+
).to(device)
|
| 18 |
+
pipe.safety_checker = None
|
| 19 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 20 |
+
threshold = 250
|
| 21 |
+
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 22 |
+
|
| 23 |
+
num_images = 3
|
| 24 |
+
|
| 25 |
+
with gr.Blocks() as demo:
|
| 26 |
+
start_state = []
|
| 27 |
+
for k in range(num_images):
|
| 28 |
+
start_state.append([None, None])
|
| 29 |
+
sketch_states = gr.State(start_state)
|
| 30 |
+
checkbox_state = gr.State(False)
|
| 31 |
+
with gr.Row():
|
| 32 |
+
with gr.Column(scale = 1):
|
| 33 |
+
with gr.Tabs(shape=(768, 768),min_width=512):
|
| 34 |
+
with gr.TabItem("Draw", shape=(512, 512),min_width=512):
|
| 35 |
+
i = gr.Image(source="canvas", shape=(512, 512), tool="color-sketch",
|
| 36 |
+
min_width=512, brush_radius = 2).style(width=600, height=600)
|
| 37 |
+
with gr.TabItem("ShadowDraw", shape=(512, 512),min_width=512):
|
| 38 |
+
i_sketch = gr.Image(shape=(512, 512),min_width=512).style(width=600, height=600)
|
| 39 |
+
prompt_box = gr.Textbox(label="Prompt")
|
| 40 |
+
with gr.Row():
|
| 41 |
+
btn = gr.Button("Render").style(width=100, height=80)
|
| 42 |
+
checkbox = gr.Checkbox(label = "ShadowDraw", value=False)
|
| 43 |
+
btn2 = gr.Button("Reset").style(width=100, height=80)
|
| 44 |
+
i_prev = gr.Image(shape=(512, 512),
|
| 45 |
+
min_width=512).style(width=768, height=768)
|
| 46 |
+
with gr.Column(scale = 1):
|
| 47 |
+
o_list = [gr.Image().style(width=512, height=512) for _ in range(num_images)]
|
| 48 |
+
|
| 49 |
+
def sketch(curr_sketch, prev_sketch, prompt, negative_prompt, seed, num_steps):
|
| 50 |
+
print("Sketching")
|
| 51 |
+
if curr_sketch is None:
|
| 52 |
+
return None, None
|
| 53 |
+
if prev_sketch is None:
|
| 54 |
+
prev_sketch = curr_sketch
|
| 55 |
+
generator = torch.Generator(device=device)
|
| 56 |
+
generator.manual_seed(seed)
|
| 57 |
+
curr_sketch_image = Image.fromarray(curr_sketch.astype(np.uint8)).convert("L")
|
| 58 |
+
|
| 59 |
+
# Run function call
|
| 60 |
+
images = pipe(prompt, curr_sketch_image.convert("RGB").point( lambda p: 256 if p > 128 else 0), negative_prompt = negative_prompt, num_inference_steps=num_steps, generator=generator, controlnet_conditioning_scale = 1.0).images
|
| 61 |
+
|
| 62 |
+
return images[0]
|
| 63 |
+
|
| 64 |
+
def run_sketching(prompt, curr_sketch, prev_sketch, sketch_states, shadow_draw):
|
| 65 |
+
to_return = []
|
| 66 |
+
for k in range(num_images):
|
| 67 |
+
seed = sketch_states[k][1]
|
| 68 |
+
if seed is None:
|
| 69 |
+
seed = np.random.randint(1000)
|
| 70 |
+
sketch_states[k][1] = seed
|
| 71 |
+
new_image = sketch(curr_sketch, prev_sketch, prompt,
|
| 72 |
+
negative_prompt, seed = seed, num_steps = 20)
|
| 73 |
+
to_return.append(new_image)
|
| 74 |
+
prev_sketch = curr_sketch
|
| 75 |
+
if shadow_draw:
|
| 76 |
+
hed_images = []
|
| 77 |
+
for image in to_return:
|
| 78 |
+
hed_images.append(hed(image, scribble=False))
|
| 79 |
+
avg_hed = np.mean([np.array(image) for image in hed_images], axis = 0)
|
| 80 |
+
curr_sketch = np.array(curr_sketch).astype(float) / 255.
|
| 81 |
+
curr_sketch = Image.fromarray(np.uint8(1.0*((0.0*curr_sketch + 1. - 1.*(avg_hed / 255.))) * 255.))
|
| 82 |
+
else:
|
| 83 |
+
curr_sketch = None
|
| 84 |
+
return to_return + [curr_sketch, prev_sketch, sketch_states]
|
| 85 |
+
|
| 86 |
+
def reset(sketch_states):
|
| 87 |
+
for k in range(num_images):
|
| 88 |
+
sketch_states[k] = [None, None]
|
| 89 |
+
return None, None, sketch_states
|
| 90 |
+
|
| 91 |
+
btn.click(run_sketching, [prompt_box, i, i_prev, sketch_states, checkbox_state], o_list + [i_sketch, i_prev, sketch_states])
|
| 92 |
+
btn2.click(reset, sketch_states, [i, i_prev, sketch_states])
|
| 93 |
+
checkbox.change(lambda i: i, inputs=[checkbox], outputs=[checkbox_state])
|
| 94 |
+
|
| 95 |
+
demo.launch()#share = True)
|
| 96 |
+
|