Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
from datetime import datetime, timedelta
|
| 7 |
+
import json
|
| 8 |
+
|
| 9 |
+
# Custom CSS with Tailwind-like utilities
|
| 10 |
+
def load_css():
|
| 11 |
+
st.markdown("""
|
| 12 |
+
<style>
|
| 13 |
+
/* Tailwind-inspired utilities */
|
| 14 |
+
.dashboard-card {
|
| 15 |
+
background-color: white;
|
| 16 |
+
border-radius: 0.5rem;
|
| 17 |
+
padding: 1.5rem;
|
| 18 |
+
box-shadow: 0 1px 3px 0 rgba(0, 0, 0, 0.1);
|
| 19 |
+
margin-bottom: 1rem;
|
| 20 |
+
}
|
| 21 |
+
.metric-card {
|
| 22 |
+
background-color: #f8fafc;
|
| 23 |
+
border-radius: 0.375rem;
|
| 24 |
+
padding: 1rem;
|
| 25 |
+
margin: 0.5rem 0;
|
| 26 |
+
border: 1px solid #e2e8f0;
|
| 27 |
+
}
|
| 28 |
+
.metric-title {
|
| 29 |
+
color: #64748b;
|
| 30 |
+
font-size: 0.875rem;
|
| 31 |
+
font-weight: 500;
|
| 32 |
+
margin-bottom: 0.5rem;
|
| 33 |
+
}
|
| 34 |
+
.metric-value {
|
| 35 |
+
color: #1e293b;
|
| 36 |
+
font-size: 1.5rem;
|
| 37 |
+
font-weight: 600;
|
| 38 |
+
}
|
| 39 |
+
.risk-high {
|
| 40 |
+
color: #dc2626;
|
| 41 |
+
}
|
| 42 |
+
.risk-moderate {
|
| 43 |
+
color: #d97706;
|
| 44 |
+
}
|
| 45 |
+
.risk-low {
|
| 46 |
+
color: #059669;
|
| 47 |
+
}
|
| 48 |
+
/* Custom Streamlit modifications */
|
| 49 |
+
.stApp {
|
| 50 |
+
background-color: #f1f5f9;
|
| 51 |
+
}
|
| 52 |
+
.css-1d391kg {
|
| 53 |
+
padding: 1rem 1rem;
|
| 54 |
+
}
|
| 55 |
+
</style>
|
| 56 |
+
""", unsafe_allow_html=True)
|
| 57 |
+
|
| 58 |
+
class FinancialDashboard:
|
| 59 |
+
def __init__(self):
|
| 60 |
+
self.risk_analyzer = FinancialRiskAnalyzer()
|
| 61 |
+
load_css()
|
| 62 |
+
|
| 63 |
+
def run(self):
|
| 64 |
+
st.set_page_config(
|
| 65 |
+
page_title="Financial Risk Analysis Dashboard",
|
| 66 |
+
page_icon="📊",
|
| 67 |
+
layout="wide"
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Sidebar
|
| 71 |
+
self.create_sidebar()
|
| 72 |
+
|
| 73 |
+
# Main dashboard
|
| 74 |
+
st.title("📊 Financial Risk Analysis Dashboard")
|
| 75 |
+
|
| 76 |
+
# Load sample or uploaded data
|
| 77 |
+
financial_data = self.load_financial_data()
|
| 78 |
+
|
| 79 |
+
if financial_data:
|
| 80 |
+
# Generate risk report
|
| 81 |
+
risk_report = self.risk_analyzer.generate_risk_report(financial_data)
|
| 82 |
+
|
| 83 |
+
# Display dashboard components
|
| 84 |
+
self.display_risk_summary(risk_report)
|
| 85 |
+
self.display_detailed_metrics(risk_report)
|
| 86 |
+
self.display_risk_charts(financial_data, risk_report)
|
| 87 |
+
self.display_recommendations(risk_report)
|
| 88 |
+
|
| 89 |
+
def create_sidebar(self):
|
| 90 |
+
with st.sidebar:
|
| 91 |
+
st.title("Controls & Filters")
|
| 92 |
+
|
| 93 |
+
# Date range selector
|
| 94 |
+
st.subheader("Date Range")
|
| 95 |
+
start_date = st.date_input(
|
| 96 |
+
"Start Date",
|
| 97 |
+
datetime.now() - timedelta(days=30)
|
| 98 |
+
)
|
| 99 |
+
end_date = st.date_input(
|
| 100 |
+
"End Date",
|
| 101 |
+
datetime.now()
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Risk threshold adjustments
|
| 105 |
+
st.subheader("Risk Thresholds")
|
| 106 |
+
leverage_threshold = st.slider(
|
| 107 |
+
"Leverage Ratio Threshold",
|
| 108 |
+
min_value=10.0,
|
| 109 |
+
max_value=50.0,
|
| 110 |
+
value=30.0
|
| 111 |
+
)
|
| 112 |
+
npl_threshold = st.slider(
|
| 113 |
+
"NPL Ratio Threshold (%)",
|
| 114 |
+
min_value=1.0,
|
| 115 |
+
max_value=10.0,
|
| 116 |
+
value=5.0
|
| 117 |
+
) / 100
|
| 118 |
+
|
| 119 |
+
# Export options
|
| 120 |
+
st.subheader("Export Options")
|
| 121 |
+
if st.button("Export Report (PDF)"):
|
| 122 |
+
st.info("Generating PDF report...")
|
| 123 |
+
# Add PDF export functionality
|
| 124 |
+
|
| 125 |
+
if st.button("Export Data (Excel)"):
|
| 126 |
+
st.info("Generating Excel file...")
|
| 127 |
+
# Add Excel export functionality
|
| 128 |
+
|
| 129 |
+
def load_financial_data(self):
|
| 130 |
+
# File upload option
|
| 131 |
+
uploaded_file = st.file_uploader(
|
| 132 |
+
"Upload financial data (JSON/CSV)",
|
| 133 |
+
type=["json", "csv"]
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
if uploaded_file:
|
| 137 |
+
try:
|
| 138 |
+
if uploaded_file.type == "application/json":
|
| 139 |
+
return json.load(uploaded_file)
|
| 140 |
+
else:
|
| 141 |
+
df = pd.read_csv(uploaded_file)
|
| 142 |
+
return df.to_dict()
|
| 143 |
+
except Exception as e:
|
| 144 |
+
st.error(f"Error loading file: {str(e)}")
|
| 145 |
+
return None
|
| 146 |
+
|
| 147 |
+
# Use sample data if no file uploaded
|
| 148 |
+
return self.get_sample_data()
|
| 149 |
+
|
| 150 |
+
def display_risk_summary(self, risk_report):
|
| 151 |
+
st.subheader("Risk Summary")
|
| 152 |
+
|
| 153 |
+
# Create three columns for key metrics
|
| 154 |
+
col1, col2, col3 = st.columns(3)
|
| 155 |
+
|
| 156 |
+
with col1:
|
| 157 |
+
self.metric_card(
|
| 158 |
+
"Overall Risk Level",
|
| 159 |
+
risk_report['risk_level'],
|
| 160 |
+
self.get_risk_color(risk_report['risk_level'])
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
with col2:
|
| 164 |
+
self.metric_card(
|
| 165 |
+
"Risk Score",
|
| 166 |
+
f"{risk_report['risk_score']:.2f}",
|
| 167 |
+
self.get_risk_color(risk_report['risk_level'])
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
with col3:
|
| 171 |
+
self.metric_card(
|
| 172 |
+
"Total Alerts",
|
| 173 |
+
len(risk_report['risk_alerts']),
|
| 174 |
+
"risk-moderate" if len(risk_report['risk_alerts']) > 0 else "risk-low"
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# Risk Alerts
|
| 178 |
+
if risk_report['risk_alerts']:
|
| 179 |
+
st.markdown("### ⚠️ Risk Alerts")
|
| 180 |
+
for alert in risk_report['risk_alerts']:
|
| 181 |
+
st.warning(alert)
|
| 182 |
+
|
| 183 |
+
def display_detailed_metrics(self, risk_report):
|
| 184 |
+
st.subheader("Detailed Metrics")
|
| 185 |
+
|
| 186 |
+
# Create tabs for different metric categories
|
| 187 |
+
tabs = st.tabs([
|
| 188 |
+
"Basic Ratios",
|
| 189 |
+
"Funding Risk",
|
| 190 |
+
"Asset Quality",
|
| 191 |
+
"Market Risk",
|
| 192 |
+
"Operational Risk"
|
| 193 |
+
])
|
| 194 |
+
|
| 195 |
+
# Basic Ratios Tab
|
| 196 |
+
with tabs[0]:
|
| 197 |
+
metrics = risk_report['detailed_metrics']['basic_ratios']
|
| 198 |
+
self.create_metrics_grid(metrics)
|
| 199 |
+
|
| 200 |
+
# Funding Risk Tab
|
| 201 |
+
with tabs[1]:
|
| 202 |
+
metrics = risk_report['detailed_metrics']['funding_risks']
|
| 203 |
+
self.create_metrics_grid(metrics)
|
| 204 |
+
|
| 205 |
+
# Asset Quality Tab
|
| 206 |
+
with tabs[2]:
|
| 207 |
+
metrics = risk_report['detailed_metrics']['asset_risks']
|
| 208 |
+
self.create_metrics_grid(metrics)
|
| 209 |
+
|
| 210 |
+
# Market Risk Tab
|
| 211 |
+
with tabs[3]:
|
| 212 |
+
metrics = risk_report['detailed_metrics']['market_risks']
|
| 213 |
+
self.create_metrics_grid(metrics)
|
| 214 |
+
|
| 215 |
+
# Operational Risk Tab
|
| 216 |
+
with tabs[4]:
|
| 217 |
+
metrics = risk_report['detailed_metrics']['operational_risks']
|
| 218 |
+
self.create_metrics_grid(metrics)
|
| 219 |
+
|
| 220 |
+
def display_risk_charts(self, financial_data, risk_report):
|
| 221 |
+
st.subheader("Risk Analysis Charts")
|
| 222 |
+
|
| 223 |
+
# Create two columns for charts
|
| 224 |
+
col1, col2 = st.columns(2)
|
| 225 |
+
|
| 226 |
+
with col1:
|
| 227 |
+
# Radar chart for key risk indicators
|
| 228 |
+
self.create_radar_chart(risk_report)
|
| 229 |
+
|
| 230 |
+
with col2:
|
| 231 |
+
# Time series chart for trending metrics
|
| 232 |
+
self.create_trend_chart(financial_data)
|
| 233 |
+
|
| 234 |
+
# Additional charts in new row
|
| 235 |
+
col3, col4 = st.columns(2)
|
| 236 |
+
|
| 237 |
+
with col3:
|
| 238 |
+
# Asset composition pie chart
|
| 239 |
+
self.create_asset_composition_chart(financial_data)
|
| 240 |
+
|
| 241 |
+
with col4:
|
| 242 |
+
# Funding structure chart
|
| 243 |
+
self.create_funding_structure_chart(financial_data)
|
| 244 |
+
|
| 245 |
+
def display_recommendations(self, risk_report):
|
| 246 |
+
st.subheader("Recommendations & Actions")
|
| 247 |
+
|
| 248 |
+
# Generate recommendations based on risk levels
|
| 249 |
+
recommendations = self.generate_recommendations(risk_report)
|
| 250 |
+
|
| 251 |
+
for category, rec_list in recommendations.items():
|
| 252 |
+
with st.expander(f"📋 {category}"):
|
| 253 |
+
for rec in rec_list:
|
| 254 |
+
st.markdown(f"- {rec}")
|
| 255 |
+
|
| 256 |
+
def metric_card(self, title, value, risk_class):
|
| 257 |
+
st.markdown(f"""
|
| 258 |
+
<div class="metric-card">
|
| 259 |
+
<div class="metric-title">{title}</div>
|
| 260 |
+
<div class="metric-value {risk_class}">{value}</div>
|
| 261 |
+
</div>
|
| 262 |
+
""", unsafe_allow_html=True)
|
| 263 |
+
|
| 264 |
+
def create_metrics_grid(self, metrics):
|
| 265 |
+
cols = st.columns(2)
|
| 266 |
+
for idx, (metric, value) in enumerate(metrics.items()):
|
| 267 |
+
with cols[idx % 2]:
|
| 268 |
+
self.metric_card(
|
| 269 |
+
self.format_metric_name(metric),
|
| 270 |
+
f"{value:.2%}" if isinstance(value, float) else value,
|
| 271 |
+
self.get_metric_risk_color(metric, value)
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
def create_radar_chart(self, risk_report):
|
| 275 |
+
# Extract key risk indicators
|
| 276 |
+
metrics = risk_report['detailed_metrics']['basic_ratios']
|
| 277 |
+
|
| 278 |
+
fig = go.Figure()
|
| 279 |
+
|
| 280 |
+
categories = list(metrics.keys())
|
| 281 |
+
values = list(metrics.values())
|
| 282 |
+
|
| 283 |
+
fig.add_trace(go.Scatterpolar(
|
| 284 |
+
r=values,
|
| 285 |
+
theta=categories,
|
| 286 |
+
fill='toself',
|
| 287 |
+
name='Current'
|
| 288 |
+
))
|
| 289 |
+
|
| 290 |
+
fig.update_layout(
|
| 291 |
+
polar=dict(
|
| 292 |
+
radialaxis=dict(
|
| 293 |
+
visible=True,
|
| 294 |
+
range=[0, 1]
|
| 295 |
+
)
|
| 296 |
+
),
|
| 297 |
+
showlegend=False
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 301 |
+
|
| 302 |
+
def create_trend_chart(self, financial_data):
|
| 303 |
+
# Create sample trend data
|
| 304 |
+
dates = pd.date_range(end=datetime.now(), periods=30, freq='D')
|
| 305 |
+
trend_data = pd.DataFrame({
|
| 306 |
+
'Date': dates,
|
| 307 |
+
'Risk Score': np.random.uniform(2, 6, 30)
|
| 308 |
+
})
|
| 309 |
+
|
| 310 |
+
fig = px.line(
|
| 311 |
+
trend_data,
|
| 312 |
+
x='Date',
|
| 313 |
+
y='Risk Score',
|
| 314 |
+
title='Risk Score Trend'
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 318 |
+
|
| 319 |
+
def create_asset_composition_chart(self, financial_data):
|
| 320 |
+
# Extract asset composition
|
| 321 |
+
assets = {
|
| 322 |
+
'Corporate Loans': financial_data.get('corporate_loans', 0),
|
| 323 |
+
'Retail Loans': financial_data.get('retail_loans', 0),
|
| 324 |
+
'Securities': financial_data.get('securities', 0),
|
| 325 |
+
'Interbank Assets': financial_data.get('interbank_assets', 0)
|
| 326 |
+
}
|
| 327 |
+
|
| 328 |
+
fig = px.pie(
|
| 329 |
+
values=list(assets.values()),
|
| 330 |
+
names=list(assets.keys()),
|
| 331 |
+
title='Asset Composition'
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 335 |
+
|
| 336 |
+
def create_funding_structure_chart(self, financial_data):
|
| 337 |
+
# Extract funding structure
|
| 338 |
+
funding = {
|
| 339 |
+
'Retail Deposits': financial_data.get('retail_deposits', 0),
|
| 340 |
+
'Corporate Deposits': financial_data.get('corporate_deposits', 0),
|
| 341 |
+
'Wholesale Funding': financial_data.get('wholesale_funding', 0),
|
| 342 |
+
'Interbank Borrowing': financial_data.get('interbank_borrowing', 0)
|
| 343 |
+
}
|
| 344 |
+
|
| 345 |
+
fig = px.bar(
|
| 346 |
+
x=list(funding.keys()),
|
| 347 |
+
y=list(funding.values()),
|
| 348 |
+
title='Funding Structure'
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 352 |
+
|
| 353 |
+
@staticmethod
|
| 354 |
+
def get_risk_color(risk_level):
|
| 355 |
+
colors = {
|
| 356 |
+
'CRITICAL': 'risk-high',
|
| 357 |
+
'HIGH': 'risk-high',
|
| 358 |
+
'MODERATE': 'risk-moderate',
|
| 359 |
+
'LOW': 'risk-low'
|
| 360 |
+
}
|
| 361 |
+
return colors.get(risk_level, 'risk-low')
|
| 362 |
+
|
| 363 |
+
@staticmethod
|
| 364 |
+
def get_metric_risk_color(metric, value):
|
| 365 |
+
# Add logic to determine color based on metric type and value
|
| 366 |
+
return 'risk-moderate'
|
| 367 |
+
|
| 368 |
+
@staticmethod
|
| 369 |
+
def format_metric_name(metric):
|
| 370 |
+
return metric.replace('_', ' ').title()
|
| 371 |
+
|
| 372 |
+
@staticmethod
|
| 373 |
+
def generate_recommendations(risk_report):
|
| 374 |
+
recommendations = {
|
| 375 |
+
'Immediate Actions': [
|
| 376 |
+
'Review and adjust leverage levels',
|
| 377 |
+
'Strengthen liquidity buffers',
|
| 378 |
+
'Enhance risk monitoring systems'
|
| 379 |
+
],
|
| 380 |
+
'Medium-term Improvements': [
|
| 381 |
+
'Develop comprehensive risk management framework',
|
| 382 |
+
'Implement stress testing scenarios',
|
| 383 |
+
'Review counterparty exposure limits'
|
| 384 |
+
],
|
| 385 |
+
'Long-term Strategy': [
|
| 386 |
+
'Diversify funding sources',
|
| 387 |
+
'Strengthen capital adequacy',
|
| 388 |
+
'Enhance risk reporting systems'
|
| 389 |
+
]
|
| 390 |
+
}
|
| 391 |
+
return recommendations
|
| 392 |
+
|
| 393 |
+
@staticmethod
|
| 394 |
+
def get_sample_data():
|
| 395 |
+
return {
|
| 396 |
+
'total_debt': 500000000,
|
| 397 |
+
'equity': 150000000,
|
| 398 |
+
'non_performing_loans': 25000000,
|
| 399 |
+
'total_loans': 400000000,
|
| 400 |
+
'loan_loss_provisions': 15000000,
|
| 401 |
+
'total_assets': 700000000,
|
| 402 |
+
'current_assets': 200000000,
|
| 403 |
+
'current_liabilities': 180000000,
|
| 404 |
+
'total_capital': 120000000,
|
| 405 |
+
'risk_weighted_assets': 500000000,
|
| 406 |
+
'short_term_funding': 300000000,
|
| 407 |
+
'total_funding': 600000000,
|
| 408 |
+
'wholesale_funding': 200000000,
|
| 409 |
+
'retail_deposits': 250000000,
|
| 410 |
+
'corporate_deposits': 150000000,
|
| 411 |
+
'interbank_borrowing': 100000000,
|
| 412 |
+
'long_term_funding': 200000000,
|
| 413 |
+
'level_3_assets': 50000000,
|
| 414 |
+
'derivative_notional': 400000000,
|
| 415 |
+
'contingent_liabilities': 80000000,
|
| 416 |
+
'undrawn_commitments': 120000000,
|
| 417 |
+
'var_99': 10000000,
|
| 418 |
+
'interest_rate_gap': 30000000,
|
| 419 |
+
'net_forex_position': 15000000,
|
| 420 |
+
'market_correlation': 0.6,
|
| 421 |
+
'process_risk_score': 0.04,
|
| 422 |
+
'system_risk_score': 0.03,
|
| 423 |
+
'compliance_risk_score': 0.02,
|
| 424 |
+
'fraud_risk_score': 0.03,
|
| 425 |
+
'collateral_coverage': 0.85,
|
| 426 |
+
'current_npl': 25000000,
|
| 427 |
+
'previous_npl': 20000000,
|
| 428 |
+
'corporate_loans': 200000000,
|
| 429 |
+
'retail_loans': 150000000,
|
| 430 |
+
'securities': 100000000,
|
| 431 |
+
'interbank_assets': 50000000
|
| 432 |
+
}
|
| 433 |
+
|
| 434 |
+
# Main app file (app.py)
|
| 435 |
+
def main():
|
| 436 |
+
dashboard = FinancialDashboard()
|
| 437 |
+
dashboard.run()
|
| 438 |
+
|
| 439 |
+
if __name__ == "__main__":
|
| 440 |
+
main()
|