root
commited on
Commit
·
e676d24
1
Parent(s):
3c0d958
upload
Browse files- .gitignore +65 -0
- Dockerfile +28 -0
- requirements.txt +26 -0
- server/.streamlit/config.toml +3 -0
- server/app/__init__.py +0 -0
- server/app/config.py +29 -0
- server/app/prompt_template.py +6 -0
- server/app/qdrant_db.py +117 -0
- server/app/vdr_schemas.py +0 -0
- server/app/vdr_session.py +298 -0
- server/app/vdr_utils.py +179 -0
- server/favicon.png +0 -0
- server/main.py +49 -0
- server/st_pages/__init__.py +1 -0
- server/st_pages/page_vdr.py +120 -0
- server/start_server.sh +3 -0
.gitignore
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.h5
|
| 6 |
+
*.out
|
| 7 |
+
|
| 8 |
+
# Distribution / packaging
|
| 9 |
+
.Python
|
| 10 |
+
build/
|
| 11 |
+
experiments/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
saved_imgs/
|
| 16 |
+
eggs/
|
| 17 |
+
.eggs/
|
| 18 |
+
lib/
|
| 19 |
+
lib64/
|
| 20 |
+
parts/
|
| 21 |
+
sdist/
|
| 22 |
+
var/
|
| 23 |
+
wheels/
|
| 24 |
+
temp_data/
|
| 25 |
+
*.egg-info/
|
| 26 |
+
.installed.cfg
|
| 27 |
+
*.egg
|
| 28 |
+
MANIFEST
|
| 29 |
+
|
| 30 |
+
# Debug
|
| 31 |
+
debug.py
|
| 32 |
+
debugs/
|
| 33 |
+
tensorboard_log/
|
| 34 |
+
saved_models/
|
| 35 |
+
configs_collection/
|
| 36 |
+
|
| 37 |
+
# Installer logs
|
| 38 |
+
pip-log.txt
|
| 39 |
+
pip-delete-this-directory.txt
|
| 40 |
+
|
| 41 |
+
# PyBuilder
|
| 42 |
+
target/
|
| 43 |
+
|
| 44 |
+
# Jupyter Notebook
|
| 45 |
+
.ipynb_checkpoints
|
| 46 |
+
|
| 47 |
+
# pyenv
|
| 48 |
+
.python-version
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# Environments
|
| 52 |
+
.env
|
| 53 |
+
.venv
|
| 54 |
+
env/
|
| 55 |
+
venv/
|
| 56 |
+
ENV/
|
| 57 |
+
env.bak/
|
| 58 |
+
venv.bak/
|
| 59 |
+
|
| 60 |
+
#saved_model
|
| 61 |
+
*.pth
|
| 62 |
+
|
| 63 |
+
*.pt
|
| 64 |
+
|
| 65 |
+
*.log
|
Dockerfile
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#FROM ubuntu:22.04
|
| 2 |
+
FROM python:3.11-bullseye
|
| 3 |
+
|
| 4 |
+
ARG DEBIAN_FRONTEND=noninteractive
|
| 5 |
+
|
| 6 |
+
USER root
|
| 7 |
+
|
| 8 |
+
RUN apt-get update && apt-get install -y \
|
| 9 |
+
curl \
|
| 10 |
+
nano \
|
| 11 |
+
poppler-utils \
|
| 12 |
+
software-properties-common \
|
| 13 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 14 |
+
|
| 15 |
+
ENV APP_ROOT=/home
|
| 16 |
+
|
| 17 |
+
WORKDIR /home
|
| 18 |
+
COPY . .
|
| 19 |
+
|
| 20 |
+
RUN chown -R root:root ${APP_ROOT} && chmod -R 777 ${APP_ROOT}
|
| 21 |
+
|
| 22 |
+
RUN pip install --upgrade pip setuptools \
|
| 23 |
+
&& pip install --no-cache-dir -r requirements.txt \
|
| 24 |
+
&& pip install streamlit==1.38.0
|
| 25 |
+
|
| 26 |
+
EXPOSE 7860
|
| 27 |
+
|
| 28 |
+
ENTRYPOINT /home/server/start_server.sh
|
requirements.txt
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas
|
| 2 |
+
pypdf
|
| 3 |
+
unstructured
|
| 4 |
+
typing
|
| 5 |
+
pydantic
|
| 6 |
+
llama-index==0.10.28
|
| 7 |
+
llama-index-llms-openai-like==0.1.3
|
| 8 |
+
llama-index-embeddings-openai==0.1.7
|
| 9 |
+
llama-index-readers-web==0.1.8
|
| 10 |
+
openai==1.53.0
|
| 11 |
+
httpx==0.27.2
|
| 12 |
+
#streamlit==1.41.1
|
| 13 |
+
#streamlit-navigation-bar==3.3.0
|
| 14 |
+
streamlit-community-navigation-bar==4.0.9
|
| 15 |
+
aiohttp
|
| 16 |
+
docx2txt
|
| 17 |
+
trafilatura==1.8.1
|
| 18 |
+
motor
|
| 19 |
+
loguru
|
| 20 |
+
qdrant-client==1.12.2
|
| 21 |
+
Pillow
|
| 22 |
+
stamina
|
| 23 |
+
pdf2image==1.17.0
|
| 24 |
+
st-clickable-images==0.0.3
|
| 25 |
+
|
| 26 |
+
#arize-phoenix==2.5.0
|
server/.streamlit/config.toml
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[theme]
|
| 2 |
+
base="light"
|
| 3 |
+
primaryColor="#E20074"
|
server/app/__init__.py
ADDED
|
File without changes
|
server/app/config.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Any, List, Tuple, Type
|
| 3 |
+
|
| 4 |
+
class Settings:
|
| 5 |
+
#==============================================================================
|
| 6 |
+
GLOBAL_API_BASE="https://llm-server.llmhub.t-systems.net/queue"
|
| 7 |
+
GLOBAL_API_KEY=os.getenv("GLOBAL_AIFS_API_KEY")
|
| 8 |
+
|
| 9 |
+
app_settings = Settings()
|
| 10 |
+
|
| 11 |
+
from loguru import logger
|
| 12 |
+
import sys
|
| 13 |
+
from datetime import time, timezone
|
| 14 |
+
import os, time
|
| 15 |
+
|
| 16 |
+
os.environ['TZ'] = 'Europe/Berlin'
|
| 17 |
+
time.tzset()
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def only_level(level):
|
| 21 |
+
def is_level(record):
|
| 22 |
+
return record['level'].name == level
|
| 23 |
+
|
| 24 |
+
return is_level
|
| 25 |
+
|
| 26 |
+
#logger.remove(0)
|
| 27 |
+
formato = '{time:YYYY-MM-DD HH:mm:ss.SS!UTC} {level:8} {message} [{file} : {line}]'
|
| 28 |
+
|
| 29 |
+
logger.add(sys.stderr, format=formato, level="DEBUG")
|
server/app/prompt_template.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
VDR_PROMPT='''\
|
| 2 |
+
You are an helpful AI assistant that answer the question base on the context provided.
|
| 3 |
+
If the context doesn't help, truthfully answer with: I can't find that information in the given context.
|
| 4 |
+
Base on the given context, focus to answer the following question:
|
| 5 |
+
{user_question}
|
| 6 |
+
'''
|
server/app/qdrant_db.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from qdrant_client import QdrantClient
|
| 2 |
+
from qdrant_client.http import models
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
import numpy as np
|
| 7 |
+
from loguru import logger
|
| 8 |
+
import stamina
|
| 9 |
+
from typing import Any, List, Tuple, Type, Literal, Optional, Union, Dict
|
| 10 |
+
|
| 11 |
+
class MyQdrantClient:
|
| 12 |
+
def __init__(self, path: str):
|
| 13 |
+
self.qdrant_client = QdrantClient(path=path)
|
| 14 |
+
logger.debug(f"Qdrant client created at {path}")
|
| 15 |
+
|
| 16 |
+
def create_collection(self, collection_name: str, vector_dim: int = 128, vector_type: str = "colbert"):
|
| 17 |
+
if vector_type == "colbert":
|
| 18 |
+
self.qdrant_client.create_collection(
|
| 19 |
+
collection_name=collection_name,
|
| 20 |
+
on_disk_payload=True, # store the payload on disk
|
| 21 |
+
vectors_config=models.VectorParams(
|
| 22 |
+
size=vector_dim,
|
| 23 |
+
distance=models.Distance.COSINE,
|
| 24 |
+
on_disk=True, # move original vectors to disk
|
| 25 |
+
multivector_config=models.MultiVectorConfig(
|
| 26 |
+
comparator=models.MultiVectorComparator.MAX_SIM
|
| 27 |
+
),
|
| 28 |
+
#quantization_config=models.BinaryQuantization(
|
| 29 |
+
#binary=models.BinaryQuantizationConfig(
|
| 30 |
+
# always_ram=True # keep only quantized vectors in RAM
|
| 31 |
+
# ),
|
| 32 |
+
#),
|
| 33 |
+
),
|
| 34 |
+
)
|
| 35 |
+
elif vector_type == "dense":
|
| 36 |
+
self.qdrant_client.create_collection(
|
| 37 |
+
collection_name=collection_name,
|
| 38 |
+
on_disk_payload=True, # store the payload on disk
|
| 39 |
+
vectors_config=models.VectorParams(
|
| 40 |
+
size=vector_dim,
|
| 41 |
+
distance=models.Distance.COSINE,
|
| 42 |
+
on_disk=True, # move original vectors to disk
|
| 43 |
+
),
|
| 44 |
+
)
|
| 45 |
+
else:
|
| 46 |
+
raise ValueError(f"Vector type {vector_type} not supported")
|
| 47 |
+
|
| 48 |
+
logger.debug(f"Qdrant collection of type {vector_type} : {collection_name} created")
|
| 49 |
+
|
| 50 |
+
def delete_collection(self, collection_name: str):
|
| 51 |
+
self.qdrant_client.delete_collection(collection_name=collection_name)
|
| 52 |
+
|
| 53 |
+
@stamina.retry(on=Exception, attempts=3) # retry mechanism if an exception occurs during the operation
|
| 54 |
+
def upsert_to_qdrant(self, batch, collection_name: str):
|
| 55 |
+
try:
|
| 56 |
+
self.qdrant_client.upsert(
|
| 57 |
+
collection_name=collection_name,
|
| 58 |
+
points=batch,
|
| 59 |
+
wait=False,
|
| 60 |
+
)
|
| 61 |
+
except Exception as e:
|
| 62 |
+
logger.error(f"Error during upsert: {e}")
|
| 63 |
+
return False
|
| 64 |
+
return True
|
| 65 |
+
|
| 66 |
+
def upsert_multivector(self, index: int, multivector_input_list: list[Any], collection_name: str):
|
| 67 |
+
try:
|
| 68 |
+
points = []
|
| 69 |
+
for j, multivector in enumerate(multivector_input_list):
|
| 70 |
+
points.append(
|
| 71 |
+
models.PointStruct(
|
| 72 |
+
id=index + j, # we just use the index as the ID
|
| 73 |
+
vector=multivector, # This is now a list of vectors
|
| 74 |
+
payload={
|
| 75 |
+
"source": "user uploaded data"
|
| 76 |
+
}, # can also add other metadata/data
|
| 77 |
+
)
|
| 78 |
+
)
|
| 79 |
+
# Upload points to Qdrant
|
| 80 |
+
|
| 81 |
+
self.upsert_to_qdrant(points, collection_name)
|
| 82 |
+
except Exception as e:
|
| 83 |
+
logger.error(f"Vector DB client - error during upsert: {e}")
|
| 84 |
+
|
| 85 |
+
def query_multivector(self, multivector_input, collection_name: str, top_k:int=10) -> list[int]:
|
| 86 |
+
try:
|
| 87 |
+
#logger.debug(f"Number of vector: {len(multivector_input)}")
|
| 88 |
+
#logger.debug(f"Vector dim: {len(multivector_input[0])}")
|
| 89 |
+
|
| 90 |
+
start_time = time.time()
|
| 91 |
+
search_result = self.qdrant_client.query_points(
|
| 92 |
+
collection_name=collection_name,
|
| 93 |
+
query=multivector_input,
|
| 94 |
+
limit=top_k,
|
| 95 |
+
# timeout=100,
|
| 96 |
+
# search_params=models.SearchParams(
|
| 97 |
+
# quantization=models.QuantizationSearchParams(
|
| 98 |
+
# ignore=False,
|
| 99 |
+
# rescore=True,
|
| 100 |
+
# oversampling=2.0,
|
| 101 |
+
# )
|
| 102 |
+
# )
|
| 103 |
+
)
|
| 104 |
+
end_time = time.time()
|
| 105 |
+
elapsed_time = end_time - start_time
|
| 106 |
+
logger.debug(f"Search completed in {elapsed_time:.4f} seconds")
|
| 107 |
+
|
| 108 |
+
result = [x.id for x in search_result.points]
|
| 109 |
+
return result
|
| 110 |
+
|
| 111 |
+
except Exception as e:
|
| 112 |
+
logger.error(f"Error during query: {e}")
|
| 113 |
+
return None
|
| 114 |
+
|
| 115 |
+
def __del__(self):
|
| 116 |
+
self.qdrant_client.close()
|
| 117 |
+
|
server/app/vdr_schemas.py
ADDED
|
File without changes
|
server/app/vdr_session.py
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import httpx
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
import subprocess
|
| 5 |
+
import uuid
|
| 6 |
+
from loguru import logger
|
| 7 |
+
from typing import Any, List, Tuple, Type, Literal, Optional, Union, Dict
|
| 8 |
+
import httpx
|
| 9 |
+
import os
|
| 10 |
+
import time
|
| 11 |
+
import subprocess
|
| 12 |
+
import uuid
|
| 13 |
+
import streamlit as st
|
| 14 |
+
from openai import OpenAI
|
| 15 |
+
import base64
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
|
| 18 |
+
from app.config import app_settings
|
| 19 |
+
|
| 20 |
+
from app.qdrant_db import MyQdrantClient
|
| 21 |
+
|
| 22 |
+
from app.vdr_utils import (
|
| 23 |
+
get_text_embedding,
|
| 24 |
+
get_image_embedding,
|
| 25 |
+
pdf_folder_to_images,
|
| 26 |
+
scale_image,
|
| 27 |
+
pil_image_to_base64,
|
| 28 |
+
load_images,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
class VDRSession:
|
| 32 |
+
def __init__(self):
|
| 33 |
+
self.client = None
|
| 34 |
+
self.api_key = None
|
| 35 |
+
self.base_url = app_settings.GLOBAL_API_BASE
|
| 36 |
+
self.SAVE_DIR = None
|
| 37 |
+
self.db_collection = None
|
| 38 |
+
self.session_id = str(uuid.uuid4())[:5]
|
| 39 |
+
self.indexed_images = []
|
| 40 |
+
self.vector_db_client = None
|
| 41 |
+
|
| 42 |
+
def set_api_key(self, api_key: str):
|
| 43 |
+
if api_key is not None and len(api_key)>10:
|
| 44 |
+
try:
|
| 45 |
+
api_key = api_key.strip()
|
| 46 |
+
client = OpenAI(api_key=api_key,
|
| 47 |
+
base_url=self.base_url)
|
| 48 |
+
models = client.models.list()
|
| 49 |
+
if models:
|
| 50 |
+
self.api_key = api_key
|
| 51 |
+
self.client = client
|
| 52 |
+
return True
|
| 53 |
+
except Exception as e:
|
| 54 |
+
logger.debug(f'Incorrect API Key: {e}')
|
| 55 |
+
|
| 56 |
+
self.client = None
|
| 57 |
+
return False
|
| 58 |
+
|
| 59 |
+
def set_context(self, embed_model: str):
|
| 60 |
+
self.embed_model = embed_model
|
| 61 |
+
|
| 62 |
+
if not self.SAVE_DIR:
|
| 63 |
+
self.SAVE_DIR=os.path.join('./temp_data', self.session_id)
|
| 64 |
+
os.makedirs(self.SAVE_DIR, exist_ok=True)
|
| 65 |
+
self.SAVE_IMAGE_DIR=os.path.join(self.SAVE_DIR, 'images')
|
| 66 |
+
logger.debug(f'Created folder: {self.SAVE_DIR} and {self.SAVE_IMAGE_DIR}')
|
| 67 |
+
|
| 68 |
+
if not self.vector_db_client:
|
| 69 |
+
self.vector_db_client = MyQdrantClient(path=self.SAVE_DIR)
|
| 70 |
+
|
| 71 |
+
if not self.db_collection:
|
| 72 |
+
self.db_collection = f"qd-{embed_model}-{self.session_id}"
|
| 73 |
+
try:
|
| 74 |
+
if self.embed_model == "tsi-embedding-colqwen2-2b-v1":
|
| 75 |
+
self.vector_db_client.create_collection(self.db_collection, vector_dim=128, vector_type="colbert")
|
| 76 |
+
elif self.embed_model == "jina-embedding-clip-v1":
|
| 77 |
+
self.vector_db_client.create_collection(self.db_collection, vector_dim=768, vector_type="dense")
|
| 78 |
+
else:
|
| 79 |
+
raise ValueError(f"Embedding model {self.embed_model} not supported")
|
| 80 |
+
except Exception as e:
|
| 81 |
+
logger.error(f"Error while creating collection: {e}")
|
| 82 |
+
|
| 83 |
+
return True
|
| 84 |
+
|
| 85 |
+
def get_available_vlms(self) -> List[str]:
|
| 86 |
+
assert self.client != None
|
| 87 |
+
model_name_list = []
|
| 88 |
+
try:
|
| 89 |
+
models = self.client.models.list()
|
| 90 |
+
for model in models.data:
|
| 91 |
+
model_name = model.id
|
| 92 |
+
substrings = ['gemini','QWEN-VL2-7B']
|
| 93 |
+
if any(substring in model_name for substring in substrings):
|
| 94 |
+
model_name_list.append(model.id)
|
| 95 |
+
|
| 96 |
+
except Exception as e:
|
| 97 |
+
logger.error(f"Error while query all models: {e}")
|
| 98 |
+
raise e
|
| 99 |
+
|
| 100 |
+
# Prioritize name
|
| 101 |
+
# Remove the item if it exists in the list
|
| 102 |
+
priority_item = "gemini-2.0-flash-exp-US"
|
| 103 |
+
if priority_item in model_name_list:
|
| 104 |
+
model_name_list.remove(priority_item)
|
| 105 |
+
|
| 106 |
+
# Insert the item at the beginning of the list
|
| 107 |
+
model_name_list.insert(0, priority_item)
|
| 108 |
+
|
| 109 |
+
return model_name_list
|
| 110 |
+
|
| 111 |
+
def get_available_image_embeds(self) -> List[str]:
|
| 112 |
+
assert self.client != None
|
| 113 |
+
model_name_list = []
|
| 114 |
+
try:
|
| 115 |
+
models = self.client.models.list()
|
| 116 |
+
for model in models.data:
|
| 117 |
+
model_name = model.id
|
| 118 |
+
substrings = ['tsi-embedding','clip']
|
| 119 |
+
if any(substring in model_name for substring in substrings):
|
| 120 |
+
model_name_list.append(model.id)
|
| 121 |
+
|
| 122 |
+
except Exception as e:
|
| 123 |
+
logger.error(f"Error while query all models: {e}")
|
| 124 |
+
raise e
|
| 125 |
+
|
| 126 |
+
return model_name_list
|
| 127 |
+
|
| 128 |
+
def search_images(self, text: str, top_k: int = 5) -> list[str]:
|
| 129 |
+
assert self.client != None
|
| 130 |
+
assert self.vector_db_client != None
|
| 131 |
+
try:
|
| 132 |
+
if not self.indexed_images:
|
| 133 |
+
raise Exception("No indexed images found. You need to click on 'Add selected context' button to index images.")
|
| 134 |
+
text = text.strip()
|
| 135 |
+
if len(text) < 2:
|
| 136 |
+
return False
|
| 137 |
+
|
| 138 |
+
embeddings = get_text_embedding(
|
| 139 |
+
texts=text,
|
| 140 |
+
openai_client=self.client,
|
| 141 |
+
model=self.embed_model
|
| 142 |
+
)[0]
|
| 143 |
+
|
| 144 |
+
index_results = self.vector_db_client.query_multivector(
|
| 145 |
+
multivector_input=embeddings,
|
| 146 |
+
collection_name=self.db_collection,
|
| 147 |
+
top_k=top_k
|
| 148 |
+
)
|
| 149 |
+
image_list=[self.indexed_images[i] for i in index_results]
|
| 150 |
+
images = []
|
| 151 |
+
for img in image_list:
|
| 152 |
+
#with open(file, "rb") as image:
|
| 153 |
+
#encoded = base64.b64encode(image.read()).decode()
|
| 154 |
+
encoded = pil_image_to_base64(img)
|
| 155 |
+
images.append(f"data:image/png;base64,{encoded}")
|
| 156 |
+
return images
|
| 157 |
+
except Exception as e:
|
| 158 |
+
logger.error(f"Error while generating image: {e}")
|
| 159 |
+
raise e
|
| 160 |
+
|
| 161 |
+
def ask(self, query: str, model: str, prompt_template: str, retrieved_context: Any, modality: str = "image", stream: bool = False) -> str:
|
| 162 |
+
assert self.client != None
|
| 163 |
+
assert query != None
|
| 164 |
+
assert prompt_template != None
|
| 165 |
+
assert retrieved_context != None
|
| 166 |
+
|
| 167 |
+
try:
|
| 168 |
+
prompt = prompt_template.format(user_question=query)
|
| 169 |
+
if modality == "image":
|
| 170 |
+
context = [
|
| 171 |
+
{
|
| 172 |
+
"type": "image_url",
|
| 173 |
+
"image_url": {
|
| 174 |
+
"url": base64_image
|
| 175 |
+
}
|
| 176 |
+
} for base64_image in retrieved_context
|
| 177 |
+
]
|
| 178 |
+
|
| 179 |
+
content = [
|
| 180 |
+
{
|
| 181 |
+
"type": "text",
|
| 182 |
+
"text": prompt
|
| 183 |
+
}
|
| 184 |
+
]
|
| 185 |
+
content=content+context
|
| 186 |
+
|
| 187 |
+
messages=[
|
| 188 |
+
{
|
| 189 |
+
"role": "user",
|
| 190 |
+
"content": content,
|
| 191 |
+
}
|
| 192 |
+
]
|
| 193 |
+
|
| 194 |
+
chat_response = self.client.chat.completions.create(
|
| 195 |
+
model=model,
|
| 196 |
+
messages=messages,
|
| 197 |
+
temperature=0.1,
|
| 198 |
+
max_tokens=2048,
|
| 199 |
+
stream=stream,
|
| 200 |
+
)
|
| 201 |
+
if not stream:
|
| 202 |
+
return chat_response.choices[0].message.content
|
| 203 |
+
else:
|
| 204 |
+
for chunk in chat_response:
|
| 205 |
+
if chunk.choices:
|
| 206 |
+
if chunk.choices[0].delta.content is not None:
|
| 207 |
+
yield chunk.choices[0].delta.content
|
| 208 |
+
#print(chunk.choices[0].delta.content, end="", flush=True)
|
| 209 |
+
|
| 210 |
+
except Exception as e:
|
| 211 |
+
logger.error(f"Error while asking: {e}")
|
| 212 |
+
raise e
|
| 213 |
+
|
| 214 |
+
def indexing(self, uploaded_files: list[str], embed_model: str, indexing_bar: Optional[st.progress] = None) -> bool:
|
| 215 |
+
self.set_context(embed_model)
|
| 216 |
+
|
| 217 |
+
assert self.client != None
|
| 218 |
+
assert self.db_collection != None
|
| 219 |
+
assert self.SAVE_DIR != None
|
| 220 |
+
assert self.embed_model != None
|
| 221 |
+
assert len(uploaded_files) > 0
|
| 222 |
+
|
| 223 |
+
# Write files to disk
|
| 224 |
+
for file in uploaded_files :
|
| 225 |
+
path = os.path.join(self.SAVE_DIR, file.name)
|
| 226 |
+
if os.path.exists(path):
|
| 227 |
+
print("File existed, skip")
|
| 228 |
+
continue
|
| 229 |
+
with open(path, "wb") as f:
|
| 230 |
+
f.write(file.getvalue())
|
| 231 |
+
|
| 232 |
+
image_path_list = pdf_folder_to_images(pdf_folder=self.SAVE_DIR, output_folder=self.SAVE_IMAGE_DIR)
|
| 233 |
+
logger.debug(f"Extracted {len(image_path_list)} images from {len(uploaded_files)} files.")
|
| 234 |
+
|
| 235 |
+
indexed_images = self.index_from_images(image_path_list, indexing_bar=indexing_bar)
|
| 236 |
+
logger.debug(f"Indexed {len(indexed_images)} images.")
|
| 237 |
+
|
| 238 |
+
self.indexed_images.extend(indexed_images)
|
| 239 |
+
return True
|
| 240 |
+
|
| 241 |
+
def clear_context(self):
|
| 242 |
+
self.indexed_images = []
|
| 243 |
+
self.vector_db_client.delete_collection(self.db_collection)
|
| 244 |
+
self.db_collection = None
|
| 245 |
+
self.vector_db_client = None
|
| 246 |
+
|
| 247 |
+
if self.SAVE_DIR:
|
| 248 |
+
if os.path.exists(self.SAVE_DIR):
|
| 249 |
+
subprocess.run(['rm', '-rf', self.SAVE_DIR])
|
| 250 |
+
logger.debug(f'Removed folder: {self.SAVE_DIR}')
|
| 251 |
+
self.SAVE_DIR = None
|
| 252 |
+
return True
|
| 253 |
+
|
| 254 |
+
def __del__(self):
|
| 255 |
+
self.clear_context()
|
| 256 |
+
logger.debug('VDR session is cleaned up.')
|
| 257 |
+
|
| 258 |
+
def index_from_images(self,
|
| 259 |
+
images_path_list: list,
|
| 260 |
+
batch_size: int =5,
|
| 261 |
+
indexing_bar: Optional[st.progress] = None
|
| 262 |
+
):
|
| 263 |
+
try:
|
| 264 |
+
indexed_images = []
|
| 265 |
+
total_len = len(images_path_list)
|
| 266 |
+
with tqdm(total=total_len, desc="Indexing Progress") as pbar:
|
| 267 |
+
for i in range(0, total_len, batch_size):
|
| 268 |
+
try:
|
| 269 |
+
batch = images_path_list[i:min(i+batch_size,total_len)]
|
| 270 |
+
#batch = load_images(batch)
|
| 271 |
+
batch = [scale_image(x, 768) for x in batch]
|
| 272 |
+
|
| 273 |
+
embeddings = get_image_embedding(
|
| 274 |
+
image_list=batch,
|
| 275 |
+
openai_client=self.client,
|
| 276 |
+
model=self.embed_model
|
| 277 |
+
)
|
| 278 |
+
self.vector_db_client.upsert_multivector(
|
| 279 |
+
index=i,
|
| 280 |
+
multivector_input_list=embeddings,
|
| 281 |
+
collection_name=self.db_collection
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
indexed_images.extend(batch)
|
| 285 |
+
# Update the progress bar
|
| 286 |
+
pbar.update(batch_size)
|
| 287 |
+
indexing_bar.progress(i/total_len, text=f"Indexing {i}/{total_len}")
|
| 288 |
+
except Exception as e:
|
| 289 |
+
logger.exception(f"Error during indexing: {e}")
|
| 290 |
+
continue
|
| 291 |
+
|
| 292 |
+
return indexed_images
|
| 293 |
+
|
| 294 |
+
logger.debug("Indexing complete!")
|
| 295 |
+
except Exception as e:
|
| 296 |
+
raise Exception(f"Error during indexing: {e}")
|
| 297 |
+
|
| 298 |
+
|
server/app/vdr_utils.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import numpy as np
|
| 3 |
+
import base64
|
| 4 |
+
import io
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from PIL import Image, ImageFile
|
| 7 |
+
from pdf2image import convert_from_path
|
| 8 |
+
import tempfile
|
| 9 |
+
from multiprocessing import Pool
|
| 10 |
+
import os
|
| 11 |
+
from loguru import logger
|
| 12 |
+
import uuid
|
| 13 |
+
|
| 14 |
+
from typing import Any, List, Tuple, Type, Literal, Optional, Union, Dict
|
| 15 |
+
|
| 16 |
+
def encode_image(image_path):
|
| 17 |
+
with open(image_path, "rb") as image_file:
|
| 18 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
| 19 |
+
|
| 20 |
+
def load_image_from_base64(image):
|
| 21 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
| 22 |
+
|
| 23 |
+
def pil_image_to_base64(image: Image) -> str:
|
| 24 |
+
"""
|
| 25 |
+
Convert a PIL Image object to its base64 representation.
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
image (Image): The PIL Image object to be converted.
|
| 29 |
+
|
| 30 |
+
Returns:
|
| 31 |
+
str: The base64 representation of the image.
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
# Create a bytes buffer
|
| 35 |
+
buffer = io.BytesIO()
|
| 36 |
+
|
| 37 |
+
# Save the image to the buffer
|
| 38 |
+
image.save(buffer, format="PNG")
|
| 39 |
+
|
| 40 |
+
# Get the bytes from the buffer
|
| 41 |
+
img_bytes = buffer.getvalue()
|
| 42 |
+
|
| 43 |
+
# Convert the bytes to base64
|
| 44 |
+
img_base64 = base64.b64encode(img_bytes).decode("utf-8")
|
| 45 |
+
|
| 46 |
+
return img_base64
|
| 47 |
+
|
| 48 |
+
def scale_image(image: Image.Image, new_height: int = 1024) -> Image.Image:
|
| 49 |
+
"""
|
| 50 |
+
Scale an image to a new height while maintaining the aspect ratio.
|
| 51 |
+
"""
|
| 52 |
+
width, height = image.size
|
| 53 |
+
aspect_ratio = width / height
|
| 54 |
+
new_width = int(new_height * aspect_ratio)
|
| 55 |
+
|
| 56 |
+
scaled_image = image.resize((new_width, new_height))
|
| 57 |
+
|
| 58 |
+
return scaled_image
|
| 59 |
+
|
| 60 |
+
def unflatten_array(flat_list, vector_size=128):
|
| 61 |
+
return np.array(flat_list).reshape(-1, vector_size)
|
| 62 |
+
|
| 63 |
+
def get_image_embedding(image_list: list[Image], openai_client, model: str, flatten: bool = False) -> list:
|
| 64 |
+
"""
|
| 65 |
+
Get the embedding of an image.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
image (Image): The image to be embedded.
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
list[list[float]] if flatten,
|
| 72 |
+
else: list[list[list[float]]] with shape = (number of images (m), number of vector for each text (n), vector dim = 128)
|
| 73 |
+
"""
|
| 74 |
+
if not isinstance(image_list, list):
|
| 75 |
+
image_list = [image_list]
|
| 76 |
+
|
| 77 |
+
input_base64_list = [f"data:image/png;base64,{pil_image_to_base64(image)}" for image in image_list]
|
| 78 |
+
# Get the embedding of the image
|
| 79 |
+
embedding = openai_client.embeddings.create(
|
| 80 |
+
input=input_base64_list,
|
| 81 |
+
model=model,
|
| 82 |
+
extra_body={
|
| 83 |
+
"modality": "image",
|
| 84 |
+
"encoding_format":"float" if not flatten else "base64",
|
| 85 |
+
},
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
result = []
|
| 89 |
+
for embed in embedding.data:
|
| 90 |
+
result.append(embed.embedding) # embed.embedding is a list[float] in case of flatten, else: list[list[float]]
|
| 91 |
+
return result
|
| 92 |
+
|
| 93 |
+
def get_text_embedding(texts: list[str], openai_client, model: str, flatten: bool = False) -> list:
|
| 94 |
+
"""
|
| 95 |
+
Get the embedding of a text.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
text (str): The text to be embedded.
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
list[list[float]] if flatten,
|
| 102 |
+
else: list[list[list[float]]] with shape = (number of texts (m), number of vector for each text (n), vector dim = 128)
|
| 103 |
+
"""
|
| 104 |
+
if not isinstance(texts, list):
|
| 105 |
+
texts = [texts]
|
| 106 |
+
|
| 107 |
+
# Get the embedding of the text
|
| 108 |
+
embedding = openai_client.embeddings.create(
|
| 109 |
+
input=texts,
|
| 110 |
+
model=model,
|
| 111 |
+
extra_body={
|
| 112 |
+
"encoding_format":"float" if not flatten else "base64",
|
| 113 |
+
},
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
result = []
|
| 117 |
+
for embed in embedding.data:
|
| 118 |
+
result.append(embed.embedding) # embed.embedding is a list[float] in case of flatten, else: list[list[float]]
|
| 119 |
+
return result
|
| 120 |
+
|
| 121 |
+
def load_images(image_paths):
|
| 122 |
+
"""
|
| 123 |
+
Load images from a list of paths and return a list of PIL image objects.
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
image_paths (list): List of image paths.
|
| 127 |
+
|
| 128 |
+
Returns:
|
| 129 |
+
list: List of PIL image objects.
|
| 130 |
+
"""
|
| 131 |
+
images = []
|
| 132 |
+
for path in image_paths:
|
| 133 |
+
try:
|
| 134 |
+
img = Image.open(path)
|
| 135 |
+
images.append(img)
|
| 136 |
+
except Exception as e:
|
| 137 |
+
logger.error(f"Error loading image at path {path}: {str(e)}")
|
| 138 |
+
return images
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def process_pdf(pdf_path: str, output_folder: str, thread_count=1):
|
| 142 |
+
result_image_paths = []
|
| 143 |
+
|
| 144 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 145 |
+
images = convert_from_path(pdf_path, dpi=200, output_folder=temp_dir, thread_count=thread_count)
|
| 146 |
+
|
| 147 |
+
# for page_num, image in enumerate(images):
|
| 148 |
+
# image_filename = f"{str(uuid.uuid4())}.png"
|
| 149 |
+
# image_path = os.path.join(output_folder, image_filename)
|
| 150 |
+
# image.save(image_path, "PNG")
|
| 151 |
+
# result_image_paths.append(image_path)
|
| 152 |
+
|
| 153 |
+
# del images
|
| 154 |
+
# return result_image_paths
|
| 155 |
+
return images
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def pdf_folder_to_images(pdf_folder: str, output_folder: str, process_count: int = 2):
|
| 159 |
+
try:
|
| 160 |
+
if process_count is None:
|
| 161 |
+
process_count = os.cpu_count()
|
| 162 |
+
|
| 163 |
+
pdf_files = [os.path.join(pdf_folder, f) for f in os.listdir(pdf_folder)
|
| 164 |
+
if f.lower().endswith('.pdf')]
|
| 165 |
+
|
| 166 |
+
# Create a list of tuples containing (pdf_file, output_folder)
|
| 167 |
+
args = [(pdf_file, output_folder) for pdf_file in pdf_files]
|
| 168 |
+
|
| 169 |
+
with Pool(process_count) as pool:
|
| 170 |
+
all_images = pool.starmap(process_pdf, args)
|
| 171 |
+
|
| 172 |
+
result = [img for sublist in all_images for img in sublist]
|
| 173 |
+
|
| 174 |
+
logger.debug(f"Number of pdfs processed: {len(all_images)} - Number of images: {len(result)}")
|
| 175 |
+
return result
|
| 176 |
+
except Exception as e:
|
| 177 |
+
logger.exception(f"Error during processing pdf: {e}")
|
| 178 |
+
|
| 179 |
+
|
server/favicon.png
ADDED
|
|
server/main.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit_navigation_bar import st_navbar
|
| 3 |
+
import st_pages as pg
|
| 4 |
+
|
| 5 |
+
st.set_page_config(page_title='T-Systems LLM Playground', page_icon='favicon.png')
|
| 6 |
+
|
| 7 |
+
with st.sidebar:
|
| 8 |
+
st.html("""<center><img src="https://upload.wikimedia.org/wikipedia/commons/0/0a/T-SYSTEMS-LOGO2013.svg" width="300" height="68" ></center>""")
|
| 9 |
+
|
| 10 |
+
st.markdown('**This is playground for the LLM available via T-Systems AI Foundation Services**')
|
| 11 |
+
|
| 12 |
+
pages_name = ['Visual Retrieval',"Documentation", "Terms & Conditions"]
|
| 13 |
+
urls = {
|
| 14 |
+
#"Create API Key":"https://apikey.llmhub.t-systems.net/#/dashboard",
|
| 15 |
+
"Documentation":"https://docs.llmhub.t-systems.net/",
|
| 16 |
+
"Terms & Conditions":"https://smartchat.ai-health.aisf.t-systems.net/privacy"
|
| 17 |
+
}
|
| 18 |
+
styles = {
|
| 19 |
+
"nav": {
|
| 20 |
+
#"background-color": "#E20074",
|
| 21 |
+
"justify-content": "center",
|
| 22 |
+
},
|
| 23 |
+
"span": {
|
| 24 |
+
"border-radius": "0.5rem",
|
| 25 |
+
"color": "rgb(49, 51, 63)",
|
| 26 |
+
"margin": "0 0.125rem",
|
| 27 |
+
"padding": "0.4375rem 0.625rem",
|
| 28 |
+
},
|
| 29 |
+
# "active": {
|
| 30 |
+
# "background-color": "rgba(256, 0, 116, 0.25)",
|
| 31 |
+
# },
|
| 32 |
+
"hover": {
|
| 33 |
+
"background-color": "rgba(226, 0, 116, 0.5)",
|
| 34 |
+
},
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
# options = {
|
| 38 |
+
# "show_menu": False,
|
| 39 |
+
# #"show_sidebar": False,
|
| 40 |
+
# }
|
| 41 |
+
page = st_navbar(
|
| 42 |
+
pages_name,
|
| 43 |
+
urls=urls,
|
| 44 |
+
styles=styles,
|
| 45 |
+
#options=options,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
if page == 'Visual Retrieval':
|
| 49 |
+
pg.page_vdr()
|
server/st_pages/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from st_pages.page_vdr import page_vdr
|
server/st_pages/page_vdr.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os, time
|
| 3 |
+
from app.vdr_session import *
|
| 4 |
+
from app.vdr_schemas import *
|
| 5 |
+
from st_clickable_images import clickable_images
|
| 6 |
+
from app.prompt_template import VDR_PROMPT
|
| 7 |
+
|
| 8 |
+
def page_vdr():
|
| 9 |
+
st.header("Visual Document Retrieval")
|
| 10 |
+
|
| 11 |
+
# Store session context
|
| 12 |
+
if "vdr_session" not in st.session_state.keys():
|
| 13 |
+
st.session_state["vdr_session"] = VDRSession()
|
| 14 |
+
|
| 15 |
+
with st.sidebar:
|
| 16 |
+
|
| 17 |
+
#api_key = st.text_input('Enter API Key:', type='password')
|
| 18 |
+
api_key = os.getenv("GLOBAL_AIFS_API_KEY")
|
| 19 |
+
|
| 20 |
+
check_api_key=st.session_state["vdr_session"].set_api_key(api_key)
|
| 21 |
+
|
| 22 |
+
if check_api_key:
|
| 23 |
+
st.success('API Key is valid!', icon='✅')
|
| 24 |
+
avai_llms = st.session_state["vdr_session"].get_available_vlms()
|
| 25 |
+
avai_embeds = st.session_state["vdr_session"].get_available_image_embeds()
|
| 26 |
+
selected_llm = st.sidebar.selectbox('Choose VLM models', avai_llms, key='selected_llm', disabled=not check_api_key)
|
| 27 |
+
selected_embed = st.sidebar.selectbox('Choose Embedding models', avai_embeds, key='selected_embed', disabled=not check_api_key)
|
| 28 |
+
#st.session_state["vdr_session"].set_context(selected_llm, selected_embed)
|
| 29 |
+
else:
|
| 30 |
+
st.warning('Please enter valid credentials!', icon='⚠️')
|
| 31 |
+
|
| 32 |
+
if check_api_key:
|
| 33 |
+
|
| 34 |
+
with st.sidebar:
|
| 35 |
+
uploaded_files = st.file_uploader("Upload PDF files", key="uploaded_files", accept_multiple_files=True, disabled=not check_api_key)
|
| 36 |
+
|
| 37 |
+
if st.button("Add selected context", key="add_context", type="primary"):
|
| 38 |
+
if uploaded_files:
|
| 39 |
+
try:
|
| 40 |
+
indexing_bar = st.progress(0, text="Indexing...")
|
| 41 |
+
if st.session_state["vdr_session"].indexing(uploaded_files, selected_embed, indexing_bar):
|
| 42 |
+
st.success('Indexing completed!')
|
| 43 |
+
indexing_bar.empty()
|
| 44 |
+
#st.rerun()
|
| 45 |
+
else:
|
| 46 |
+
st.warning('Files empty or not supported.', icon='⚠️')
|
| 47 |
+
except Exception as e:
|
| 48 |
+
st.error(f"Error during indexing: {e}")
|
| 49 |
+
else:
|
| 50 |
+
st.warning('Please upload files first!', icon='⚠️')
|
| 51 |
+
|
| 52 |
+
if st.button("🗑️ Remove all context", key="remove_context"):
|
| 53 |
+
try:
|
| 54 |
+
st.session_state["vdr_session"].clear_context()
|
| 55 |
+
st.success("Context removed")
|
| 56 |
+
st.rerun()
|
| 57 |
+
except Exception as e:
|
| 58 |
+
st.error(f"Error during removing context: {e}")
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
top_k_sim = st.slider(label="Top k similarity", min_value=1, max_value=10, value=3, step=1, key="top_k_sim")
|
| 62 |
+
#text_only_embed = st.toggle("Text only embedding", key="text_only_embed", value=False)
|
| 63 |
+
chat_prompt = st.text_area("Prompt template", key="chat_prompt", value=VDR_PROMPT, height=300)
|
| 64 |
+
|
| 65 |
+
query = st.text_input(label="Query",key='query',placeholder="Enter your query here",label_visibility="hidden", disabled=not st.session_state.get("vdr_session").indexed_images)
|
| 66 |
+
|
| 67 |
+
with st.expander(f"**Top {top_k_sim} retrieved contexts**", expanded=True):
|
| 68 |
+
try:
|
| 69 |
+
if len(query.strip()) > 2:
|
| 70 |
+
if query != st.session_state.get("last_query", None):
|
| 71 |
+
with st.spinner('Searching...'):
|
| 72 |
+
st.session_state["last_query"] = query
|
| 73 |
+
st.session_state["result_images"] = st.session_state["vdr_session"].search_images(query, top_k_sim)
|
| 74 |
+
|
| 75 |
+
if st.session_state.get("result_images", []):
|
| 76 |
+
images = st.session_state["result_images"]
|
| 77 |
+
|
| 78 |
+
clicked = clickable_images(
|
| 79 |
+
images,
|
| 80 |
+
titles=[f"Image #{str(i)}" for i in range(len(images))],
|
| 81 |
+
div_style={"display": "flex", "justify-content": "center", "flex-wrap": "wrap"},
|
| 82 |
+
img_style={"margin": "5px", "height": "200px"},
|
| 83 |
+
)
|
| 84 |
+
st.write(f"**Retrieved by: {selected_embed}**")
|
| 85 |
+
|
| 86 |
+
@st.dialog(" ", width="large")
|
| 87 |
+
def show_selected_image(id):
|
| 88 |
+
st.markdown(f"**Similarity rank: {id}**")
|
| 89 |
+
st.image(images[id])
|
| 90 |
+
|
| 91 |
+
if clicked > -1 and clicked != st.session_state.get("clicked", None):
|
| 92 |
+
show_selected_image(clicked)
|
| 93 |
+
st.session_state["clicked"] = clicked
|
| 94 |
+
|
| 95 |
+
except Exception as e:
|
| 96 |
+
st.error(f"Error during search: {e}")
|
| 97 |
+
|
| 98 |
+
if st.session_state.get("result_images", None):
|
| 99 |
+
if st.button("Generate answer", key="ask", type="primary"):
|
| 100 |
+
if len(query.strip()) > 2:
|
| 101 |
+
try:
|
| 102 |
+
with st.spinner('Generating response...'):
|
| 103 |
+
stream_response = st.session_state["vdr_session"].ask(
|
| 104 |
+
query=query,
|
| 105 |
+
model=selected_llm,
|
| 106 |
+
prompt_template= chat_prompt,
|
| 107 |
+
retrieved_context=st.session_state["result_images"],
|
| 108 |
+
stream=True
|
| 109 |
+
)
|
| 110 |
+
#print(stream_response)
|
| 111 |
+
st.write_stream(stream_response)
|
| 112 |
+
st.write(f"**Answered by: {selected_llm}**")
|
| 113 |
+
except Exception as e:
|
| 114 |
+
st.error(f"Error during asking: {e}")
|
| 115 |
+
else:
|
| 116 |
+
st.warning('Please enter query first!', icon='⚠️')
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
server/start_server.sh
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
#cd /home/server/ && python3 main.py
|
| 3 |
+
cd /home/server/ && streamlit run main.py --server.port 7860
|