tojonatolotra commited on
Commit
e06bc20
·
verified ·
1 Parent(s): bbef4fd

Update app.py

Browse files

🧪 Test Shilin-LU/VINE-B-Enc

Files changed (1) hide show
  1. app.py +14 -30
app.py CHANGED
@@ -1,33 +1,32 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
7
  import torch
8
 
9
  model_repo_id = "stabilityai/sdxl-turbo" # Base model
10
- lora_adapter_id = "radames/sdxl-turbo-DPO-LoRA" # LoRA adapter
11
- lora_adapter_name = "dpo-lora-sdxl-turbo"
12
 
 
13
  if torch.cuda.is_available():
14
  torch_dtype = torch.float16
15
- device = "cuda"
16
  else:
17
  torch_dtype = torch.float32
18
- device = "cpu"
19
 
20
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, variant="fp16" if torch_dtype==torch.float16 else None)
21
  pipe = pipe.to(device)
22
  # Charger l'adapter LoRA
23
- pipe.load_lora_weights(lora_adapter_id, adapter_name=lora_adapter_name)
24
- pipe.set_adapters([lora_adapter_name], adapter_weights=[1.0])
 
 
 
 
25
 
26
  MAX_SEED = np.iinfo(np.int32).max
27
  MAX_IMAGE_SIZE = 1024
28
 
29
-
30
- # @spaces.GPU #[uncomment to use ZeroGPU]
31
  def infer(
32
  prompt,
33
  negative_prompt,
@@ -41,9 +40,7 @@ def infer(
41
  ):
42
  if randomize_seed:
43
  seed = random.randint(0, MAX_SEED)
44
-
45
  generator = torch.Generator().manual_seed(seed)
46
-
47
  image = pipe(
48
  prompt=prompt,
49
  negative_prompt=negative_prompt,
@@ -53,10 +50,8 @@ def infer(
53
  height=height,
54
  generator=generator,
55
  ).images[0]
56
-
57
  return image, seed
58
 
59
-
60
  examples = [
61
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
62
  "An astronaut riding a green horse",
@@ -72,8 +67,7 @@ css = """
72
 
73
  with gr.Blocks(css=css) as demo:
74
  with gr.Column(elem_id="col-container"):
75
- gr.Markdown(" # Text-to-Image Gradio Template")
76
-
77
  with gr.Row():
78
  prompt = gr.Text(
79
  label="Prompt",
@@ -82,11 +76,8 @@ with gr.Blocks(css=css) as demo:
82
  placeholder="Enter your prompt",
83
  container=False,
84
  )
85
-
86
  run_button = gr.Button("Run", scale=0, variant="primary")
87
-
88
  result = gr.Image(label="Result", show_label=False)
89
-
90
  with gr.Accordion("Advanced Settings", open=False):
91
  negative_prompt = gr.Text(
92
  label="Negative prompt",
@@ -94,7 +85,6 @@ with gr.Blocks(css=css) as demo:
94
  placeholder="Enter a negative prompt",
95
  visible=False,
96
  )
97
-
98
  seed = gr.Slider(
99
  label="Seed",
100
  minimum=0,
@@ -102,43 +92,37 @@ with gr.Blocks(css=css) as demo:
102
  step=1,
103
  value=0,
104
  )
105
-
106
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
107
-
108
  with gr.Row():
109
  width = gr.Slider(
110
  label="Width",
111
  minimum=256,
112
  maximum=MAX_IMAGE_SIZE,
113
  step=32,
114
- value=1024, # Replace with defaults that work for your model
115
  )
116
-
117
  height = gr.Slider(
118
  label="Height",
119
  minimum=256,
120
  maximum=MAX_IMAGE_SIZE,
121
  step=32,
122
- value=1024, # Replace with defaults that work for your model
123
  )
124
-
125
  with gr.Row():
126
  guidance_scale = gr.Slider(
127
  label="Guidance scale",
128
  minimum=0.0,
129
  maximum=10.0,
130
  step=0.1,
131
- value=0.0, # Replace with defaults that work for your model
132
  )
133
-
134
  num_inference_steps = gr.Slider(
135
  label="Number of inference steps",
136
  minimum=1,
137
  maximum=50,
138
  step=1,
139
- value=2, # Replace with defaults that work for your model
140
  )
141
-
142
  gr.Examples(examples=examples, inputs=[prompt])
143
  gr.on(
144
  triggers=[run_button.click, prompt.submit],
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
 
4
  from diffusers import DiffusionPipeline
5
  import torch
6
 
7
  model_repo_id = "stabilityai/sdxl-turbo" # Base model
8
+ lora_adapter_id = "Shilin-LU/VINE-B-Enc" # LoRA adapter
9
+ lora_adapter_name = "VINE-B-Enc"
10
 
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
  if torch.cuda.is_available():
13
  torch_dtype = torch.float16
 
14
  else:
15
  torch_dtype = torch.float32
 
16
 
17
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, variant="fp16" if torch_dtype==torch.float16 else None)
18
  pipe = pipe.to(device)
19
  # Charger l'adapter LoRA
20
+ try:
21
+ pipe.load_lora_weights(lora_adapter_id, adapter_name=lora_adapter_name)
22
+ pipe.set_adapters([lora_adapter_name], adapter_weights=[1.0])
23
+ except Exception as e:
24
+ print("[INFO] If you see 'PEFT backend is required for this method.', please install PEFT with: pip install peft\nError details:", e)
25
+ print(f"Erreur lors du chargement de l'adapter LoRA: {e}")
26
 
27
  MAX_SEED = np.iinfo(np.int32).max
28
  MAX_IMAGE_SIZE = 1024
29
 
 
 
30
  def infer(
31
  prompt,
32
  negative_prompt,
 
40
  ):
41
  if randomize_seed:
42
  seed = random.randint(0, MAX_SEED)
 
43
  generator = torch.Generator().manual_seed(seed)
 
44
  image = pipe(
45
  prompt=prompt,
46
  negative_prompt=negative_prompt,
 
50
  height=height,
51
  generator=generator,
52
  ).images[0]
 
53
  return image, seed
54
 
 
55
  examples = [
56
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
57
  "An astronaut riding a green horse",
 
67
 
68
  with gr.Blocks(css=css) as demo:
69
  with gr.Column(elem_id="col-container"):
70
+ gr.Markdown(" # Text-to-Image Gradio Template (Shilin-LU/VINE-B-Enc adapter)")
 
71
  with gr.Row():
72
  prompt = gr.Text(
73
  label="Prompt",
 
76
  placeholder="Enter your prompt",
77
  container=False,
78
  )
 
79
  run_button = gr.Button("Run", scale=0, variant="primary")
 
80
  result = gr.Image(label="Result", show_label=False)
 
81
  with gr.Accordion("Advanced Settings", open=False):
82
  negative_prompt = gr.Text(
83
  label="Negative prompt",
 
85
  placeholder="Enter a negative prompt",
86
  visible=False,
87
  )
 
88
  seed = gr.Slider(
89
  label="Seed",
90
  minimum=0,
 
92
  step=1,
93
  value=0,
94
  )
 
95
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
96
  with gr.Row():
97
  width = gr.Slider(
98
  label="Width",
99
  minimum=256,
100
  maximum=MAX_IMAGE_SIZE,
101
  step=32,
102
+ value=1024,
103
  )
 
104
  height = gr.Slider(
105
  label="Height",
106
  minimum=256,
107
  maximum=MAX_IMAGE_SIZE,
108
  step=32,
109
+ value=1024,
110
  )
 
111
  with gr.Row():
112
  guidance_scale = gr.Slider(
113
  label="Guidance scale",
114
  minimum=0.0,
115
  maximum=10.0,
116
  step=0.1,
117
+ value=0.0,
118
  )
 
119
  num_inference_steps = gr.Slider(
120
  label="Number of inference steps",
121
  minimum=1,
122
  maximum=50,
123
  step=1,
124
+ value=2,
125
  )
 
126
  gr.Examples(examples=examples, inputs=[prompt])
127
  gr.on(
128
  triggers=[run_button.click, prompt.submit],