Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,35 +1,65 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
from peft import PeftModel
|
| 4 |
|
| 5 |
-
# 1) Load
|
| 6 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
model = PeftModel.from_pretrained(
|
| 13 |
-
|
| 14 |
-
"testi123456789/elektromart"
|
| 15 |
-
device_map=None
|
| 16 |
)
|
| 17 |
model.to("cpu")
|
| 18 |
model.eval()
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 23 |
inputs.pop("token_type_ids", None)
|
| 24 |
inputs = {k: v.to("cpu") for k, v in inputs.items()}
|
| 25 |
-
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 26 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
fn=chat_fn,
|
| 32 |
-
inputs=
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
from peft import PeftModel
|
| 5 |
|
| 6 |
+
# 1) Load tokenizer and base model on CPU (or GPU if available)
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained("finnish-nlp/ahma-3b")
|
| 8 |
+
if tokenizer.pad_token is None:
|
| 9 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 10 |
|
| 11 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
+
"finnish-nlp/ahma-3b",
|
| 13 |
+
torch_dtype=torch.float32,
|
| 14 |
+
device_map={"": "cpu"}
|
| 15 |
+
)
|
| 16 |
|
| 17 |
+
# 2) Apply your fine-tuned LoRA adapter
|
| 18 |
model = PeftModel.from_pretrained(
|
| 19 |
+
base_model,
|
| 20 |
+
"testi123456789/elektromart"
|
|
|
|
| 21 |
)
|
| 22 |
model.to("cpu")
|
| 23 |
model.eval()
|
| 24 |
|
| 25 |
+
# 3) Instruction you fine-tuned on
|
| 26 |
+
INSTRUCTION = "Vastaa asiakkaan kyselyyn ystävällisesti ElektroMartin asiakaspalveluna."
|
| 27 |
+
|
| 28 |
+
def chat_fn(user_question: str, max_new_tokens: int = 100,
|
| 29 |
+
temperature: float = 0.7, repetition_penalty: float = 1.25) -> str:
|
| 30 |
+
# 4) Build the prompt exactly as during training
|
| 31 |
+
prompt = f"[INST] {INSTRUCTION}\n{user_question} [/INST]\n"
|
| 32 |
+
|
| 33 |
+
# 5) Tokenize & clean up
|
| 34 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 35 |
inputs.pop("token_type_ids", None)
|
| 36 |
inputs = {k: v.to("cpu") for k, v in inputs.items()}
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
# 6) Generate
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
outputs = model.generate(
|
| 41 |
+
**inputs,
|
| 42 |
+
max_new_tokens=max_new_tokens,
|
| 43 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 44 |
+
do_sample=True,
|
| 45 |
+
repetition_penalty=repetition_penalty
|
| 46 |
+
)
|
| 47 |
|
| 48 |
+
# 7) Decode only the newly generated part
|
| 49 |
+
generated = outputs[0][ inputs["input_ids"].shape[-1] : ]
|
| 50 |
+
answer = tokenizer.decode(generated, skip_special_tokens=True)
|
| 51 |
+
return answer.strip()
|
| 52 |
+
|
| 53 |
+
# 8) Expose Gradio interface
|
| 54 |
+
iface = gr.Interface(
|
| 55 |
fn=chat_fn,
|
| 56 |
+
inputs=[
|
| 57 |
+
gr.Textbox(label="Kysy jotain…", placeholder="Kirjoita kysymyksesi tähän"),
|
| 58 |
+
],
|
| 59 |
+
outputs=gr.Textbox(label="Vastaus"),
|
| 60 |
+
title="ElektroMartin Chatbotti"
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
if __name__ == "__main__":
|
| 64 |
+
iface.launch()
|
| 65 |
+
|