Spaces:
Sleeping
Sleeping
Commit
Browse files- app.py +20 -6
- lang_id.py +2 -1
- poetry.lock +0 -0
- pyproject.toml +20 -0
app.py
CHANGED
|
@@ -33,7 +33,12 @@ def resample_audio(audio, orig_sr, target_sr=16000):
|
|
| 33 |
|
| 34 |
def process_chunk(chunk, language_set) -> pd.DataFrame:
|
| 35 |
print(f"Processing audio chunk of length {len(chunk)}")
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
length = len(chunk) / SAMPLING_RATE # 音声データの長さ(秒)
|
| 38 |
s = datetime.now()
|
| 39 |
selected_scores, all_scores = identify_languages(chunk, language_set)
|
|
@@ -55,8 +60,8 @@ def process_chunk(chunk, language_set) -> pd.DataFrame:
|
|
| 55 |
|
| 56 |
return pd.DataFrame({
|
| 57 |
"Length (s)": [length],
|
| 58 |
-
"
|
| 59 |
-
"Japanese_English": [f"{ja_en} ({ja_prob:.2f}, {en_prob:.2f})"],
|
| 60 |
"Language": [top3_languages],
|
| 61 |
"Lang ID Time": [lang_id_time],
|
| 62 |
"Transcribe Time": [transcribe_time],
|
|
@@ -80,9 +85,6 @@ def process_audio_stream(audio, chunk_duration, language_set):
|
|
| 80 |
audio_data = resample_audio(audio_data, sr, target_sr=SAMPLING_RATE)
|
| 81 |
audio_sec = 0
|
| 82 |
|
| 83 |
-
# 音量の正規化
|
| 84 |
-
audio_data = normalize_audio(audio_data)
|
| 85 |
-
|
| 86 |
current_chunk.append(audio_data)
|
| 87 |
|
| 88 |
total_chunk = np.concatenate(current_chunk)
|
|
@@ -93,7 +95,14 @@ def process_audio_stream(audio, chunk_duration, language_set):
|
|
| 93 |
total_chunk = total_chunk[SAMPLING_RATE * chunk_duration:]
|
| 94 |
audio_sec += chunk_duration
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
df = process_chunk(chunk, language_set)
|
|
|
|
|
|
|
| 97 |
data_df = pd.concat([data_df, df], ignore_index=True)
|
| 98 |
|
| 99 |
current_chunk = [total_chunk]
|
|
@@ -124,6 +133,11 @@ def process_audio(audio, chunk_duration, language_set):
|
|
| 124 |
audio_data = resample_audio(audio_data, sr, target_sr=SAMPLING_RATE)
|
| 125 |
audio_sec = 0
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
# 音量の正規化
|
| 128 |
audio_data = normalize_audio(audio_data)
|
| 129 |
|
|
|
|
| 33 |
|
| 34 |
def process_chunk(chunk, language_set) -> pd.DataFrame:
|
| 35 |
print(f"Processing audio chunk of length {len(chunk)}")
|
| 36 |
+
rms = np.sqrt(np.mean(chunk**2))
|
| 37 |
+
db_level = 20 * np.log10(rms + 1e-9) # 加えた小さな値で-inf値を防ぐ
|
| 38 |
+
|
| 39 |
+
# 音量の正規化
|
| 40 |
+
chunk = normalize_audio(chunk)
|
| 41 |
+
|
| 42 |
length = len(chunk) / SAMPLING_RATE # 音声データの長さ(秒)
|
| 43 |
s = datetime.now()
|
| 44 |
selected_scores, all_scores = identify_languages(chunk, language_set)
|
|
|
|
| 60 |
|
| 61 |
return pd.DataFrame({
|
| 62 |
"Length (s)": [length],
|
| 63 |
+
"db_level": [db_level],
|
| 64 |
+
"Japanese_English": [f"{ja_en} ({ja_prob:.2f}, {en_prob:.2f})"] if db_level > 50 else ["Silent"],
|
| 65 |
"Language": [top3_languages],
|
| 66 |
"Lang ID Time": [lang_id_time],
|
| 67 |
"Transcribe Time": [transcribe_time],
|
|
|
|
| 85 |
audio_data = resample_audio(audio_data, sr, target_sr=SAMPLING_RATE)
|
| 86 |
audio_sec = 0
|
| 87 |
|
|
|
|
|
|
|
|
|
|
| 88 |
current_chunk.append(audio_data)
|
| 89 |
|
| 90 |
total_chunk = np.concatenate(current_chunk)
|
|
|
|
| 95 |
total_chunk = total_chunk[SAMPLING_RATE * chunk_duration:]
|
| 96 |
audio_sec += chunk_duration
|
| 97 |
|
| 98 |
+
# Check if the audio in the window is too quiet
|
| 99 |
+
# rms = np.sqrt(np.mean(chunk**2))
|
| 100 |
+
# db_level = 20 * np.log10(rms + 1e-9) # 加えた小さな値で-inf値を防ぐ
|
| 101 |
+
# print(db_level)
|
| 102 |
+
|
| 103 |
df = process_chunk(chunk, language_set)
|
| 104 |
+
# add db_level
|
| 105 |
+
# df["dB Level"] = db_level
|
| 106 |
data_df = pd.concat([data_df, df], ignore_index=True)
|
| 107 |
|
| 108 |
current_chunk = [total_chunk]
|
|
|
|
| 133 |
audio_data = resample_audio(audio_data, sr, target_sr=SAMPLING_RATE)
|
| 134 |
audio_sec = 0
|
| 135 |
|
| 136 |
+
# Check if the audio in the window is too quiet
|
| 137 |
+
rms = np.sqrt(np.mean(audio_data**2))
|
| 138 |
+
db_level = 20 * np.log10(rms + 1e-9) # 加えた小さな値で-inf値を防ぐ
|
| 139 |
+
print(db_level)
|
| 140 |
+
|
| 141 |
# 音量の正規化
|
| 142 |
audio_data = normalize_audio(audio_data)
|
| 143 |
|
lang_id.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from speechbrain.inference.classifiers import EncoderClassifier
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
|
@@ -42,7 +43,7 @@ def identify_languages(chunk: np.ndarray, languages: list[str] = ["Japanese", "E
|
|
| 42 |
lang_scores, _, _, _ = language_id.classify_batch(torch.from_numpy(chunk).unsqueeze(0))
|
| 43 |
|
| 44 |
# 結果の整形
|
| 45 |
-
all_scores = {INDEX_TO_LANG[i]: score for i, score in enumerate(lang_scores[0])}
|
| 46 |
selected_scores = {lang: float(all_scores[lang]) for lang in languages}
|
| 47 |
|
| 48 |
return selected_scores, all_scores
|
|
|
|
| 1 |
+
import math
|
| 2 |
from speechbrain.inference.classifiers import EncoderClassifier
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
|
|
|
| 43 |
lang_scores, _, _, _ = language_id.classify_batch(torch.from_numpy(chunk).unsqueeze(0))
|
| 44 |
|
| 45 |
# 結果の整形
|
| 46 |
+
all_scores = {INDEX_TO_LANG[i]: 100 * math.exp(score) for i, score in enumerate(lang_scores[0])}
|
| 47 |
selected_scores = {lang: float(all_scores[lang]) for lang in languages}
|
| 48 |
|
| 49 |
return selected_scores, all_scores
|
poetry.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pyproject.toml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[tool.poetry]
|
| 2 |
+
name = "speech-language-detection"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = ""
|
| 5 |
+
authors = ["Makoto Tanji <tanji.makoto@gmail.com>"]
|
| 6 |
+
readme = "README.md"
|
| 7 |
+
|
| 8 |
+
[tool.poetry.dependencies]
|
| 9 |
+
python = "^3.10"
|
| 10 |
+
transformers = "^4.41.2"
|
| 11 |
+
gradio = "^4.36.1"
|
| 12 |
+
sounddevice = "^0.4.7"
|
| 13 |
+
numpy = "^2.0.0"
|
| 14 |
+
pandas = "^2.2.2"
|
| 15 |
+
speechbrain = "^1.0.0"
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
[build-system]
|
| 19 |
+
requires = ["poetry-core"]
|
| 20 |
+
build-backend = "poetry.core.masonry.api"
|