syedkhalid076 commited on
Commit
d0e6f56
·
verified ·
1 Parent(s): dc3b0de

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +91 -38
src/streamlit_app.py CHANGED
@@ -1,40 +1,93 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
1
+ # app.py
2
+
 
3
  import streamlit as st
4
+ from PIL import Image
5
+ import io
6
+
7
+ import torch
8
+ from transformers import AutoModel, AutoTokenizer
9
+
10
+ @st.cache_resource(show_spinner=True)
11
+ def load_model():
12
+ model = AutoModel.from_pretrained("openbmb/MiniCPM-V", trust_remote_code=True, torch_dtype=torch.bfloat16)
13
+ tokenizer = AutoTokenizer.from_pretrained("openbmb/MiniCPM-V", trust_remote_code=True)
14
+ # send to GPU/CPU as per availability
15
+ if torch.cuda.is_available():
16
+ model = model.to(device='cuda', dtype=torch.bfloat16)
17
+ else:
18
+ model = model.to(device='cpu')
19
+ model.eval()
20
+ return model, tokenizer
21
+
22
+ model, tokenizer = load_model()
23
+
24
+ st.set_page_config(page_title="MiniCPM-V Chat", layout="wide")
25
+ st.title("📄 MiniCPM-V Chat — Image/Text → Markdown / Chat")
26
+
27
+ if "history" not in st.session_state:
28
+ st.session_state.history = []
29
+
30
+ # Sidebar: upload or text input
31
+ with st.sidebar:
32
+ uploaded_file = st.file_uploader("Upload image / pdf-page (image) or enter text:", type=["jpg","jpeg","png","pdf","txt"])
33
+ text_input = st.text_area("Or paste text here:")
34
+
35
+ # Main chat interface
36
+ for msg in st.session_state.history:
37
+ with st.chat_message(msg["role"]):
38
+ st.markdown(msg["content"])
39
+
40
+ def run_minicpm_v(input_image=None, input_text=None, history=None):
41
+ """
42
+ input_image: PIL.Image or None
43
+ input_text: str or None
44
+ history: list of prior messages (role, content)
45
+ """
46
+ msgs = []
47
+ if history:
48
+ msgs = history.copy()
49
+ # Compose new user message
50
+ user_content = ""
51
+ if input_image is not None:
52
+ user_content = "[Image Uploaded]\n" # or some marker + optional prompt
53
+ if input_text:
54
+ user_content += input_text
55
+ msgs.append({"role": "user", "content": user_content})
56
+
57
+ # Run the multimodal chat
58
+ res, context, _ = model.chat(
59
+ image=input_image,
60
+ msgs=msgs,
61
+ context=None,
62
+ tokenizer=tokenizer,
63
+ sampling=True,
64
+ temperature=0.7,
65
+ )
66
+ return res
67
+
68
+ if uploaded_file is not None or text_input:
69
+ with st.chat_message("user"):
70
+ if uploaded_file is not None:
71
+ st.image(uploaded_file, caption="Uploaded")
72
+ if text_input:
73
+ st.markdown(text_input)
74
+ # Process input
75
+ input_image = None
76
+ input_text = None
77
+ if uploaded_file is not None:
78
+ # try open as image
79
+ try:
80
+ input_image = Image.open(uploaded_file).convert("RGB")
81
+ except Exception as e:
82
+ st.error("Could not open uploaded file as image.")
83
+ if text_input:
84
+ input_text = text_input
85
+
86
+ with st.spinner("Thinking..."):
87
+ reply = run_minicpm_v(input_image=input_image, input_text=input_text, history=st.session_state.history)
88
+
89
+ st.session_state.history.append({"role": "assistant", "content": reply})
90
+ with st.chat_message("assistant"):
91
+ st.markdown(reply)
92
 
93
+ st.chat_input(placeholder="Send more text or upload another file…") # optional extra prompt