Spaces:
Runtime error
Runtime error
| import torch | |
| import gradio as gr | |
| import numpy as np | |
| import torch.nn.functional as F | |
| from skimage import img_as_ubyte | |
| from Allweather.util import load_img, save_img | |
| from basicsr.models.archs.histoformer_arch import Histoformer | |
| model_restoration = Histoformer.from_pretrained("sunsean/Histoformer-real") | |
| model_restoration.eval() | |
| factor = 8 | |
| def predict(input_img): | |
| img = np.float32(load_img(input_img))/255. | |
| img = torch.from_numpy(img).permute(2,0,1) | |
| input_ = img.unsqueeze(0) | |
| # Padding in case images are not multiples of 8 | |
| h,w = input_.shape[2], input_.shape[3] | |
| H,W = ((h+factor)//factor)*factor, ((w+factor)//factor)*factor | |
| padh = H-h if h%factor!=0 else 0 | |
| padw = W-w if w%factor!=0 else 0 | |
| input_ = F.pad(input_, (0,padw,0,padh), 'reflect') | |
| restored = model_restoration(input_) | |
| output_path = "restored.png" | |
| restored = restored[:,:,:h,:w] | |
| restored = torch.clamp(restored,0,1).detach().permute(0, 2, 3, 1).squeeze(0).numpy() | |
| save_img(output_path, img_as_ubyte(restored)) | |
| example_images = [ | |
| "examples/example.jpg", | |
| ] | |
| gradio_app = gr.Interface( | |
| predict, | |
| inputs=gr.Image(label="Upload images with adverse weather degradations", type="filepath"), | |
| outputs=[ | |
| gr.Image(type="filepath", label="Restored image", height=768, width=768), | |
| gr.Textbox(label="Error Message") | |
| ], | |
| title="Histoformer: All-in-one Image Restoration under Adverse Weather Conditions", | |
| description="[Histoformer](https://huggingface.co/sunsean/Histoformer/) is a image restoration model for all-in-one adverse weather.", | |
| examples=example_images | |
| ) | |
| if __name__ == "__main__": | |
| gradio_app.launch() |