Spaces:
Running
on
Zero
Running
on
Zero
xieli
commited on
Commit
Β·
0dc7005
1
Parent(s):
d94f450
feat: support int4/int8 quantization when load
Browse files- README.md +1 -0
- app.py +50 -11
- model_loader.py +159 -30
- requirements.txt +1 -0
- tts.py +13 -3
README.md
CHANGED
|
@@ -11,3 +11,4 @@ short_description: Try out Step-Audio-EditX
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 14 |
+
|
app.py
CHANGED
|
@@ -81,7 +81,10 @@ def initialize_models():
|
|
| 81 |
os.path.join(args_global.model_path, "Step-Audio-EditX"),
|
| 82 |
encoder,
|
| 83 |
model_source=model_source,
|
| 84 |
-
tts_model_id=args_global.tts_model_id
|
|
|
|
|
|
|
|
|
|
| 85 |
)
|
| 86 |
logger.info("β StepCommonAudioTTS loaded")
|
| 87 |
print("Models initialized inside GPU context.")
|
|
@@ -477,26 +480,62 @@ if __name__ == "__main__":
|
|
| 477 |
default=None,
|
| 478 |
help="TTS model ID for online loading (if different from model-path)"
|
| 479 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 480 |
|
| 481 |
args = parser.parse_args()
|
| 482 |
|
| 483 |
# Store args globally for model configuration
|
| 484 |
args_global = args
|
| 485 |
-
|
| 486 |
logger.info(f"Configuration loaded:")
|
| 487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 488 |
logger.info(f"Model path: {args.model_path}")
|
| 489 |
logger.info(f"Tokenizer model ID: {args.tokenizer_model_id}")
|
|
|
|
|
|
|
| 490 |
if args.tts_model_id:
|
| 491 |
logger.info(f"TTS model ID: {args.tts_model_id}")
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
if ZEROGPU_AVAILABLE:
|
| 496 |
-
logger.info("π ZeroGPU detected - using dynamic GPU duration management!")
|
| 497 |
-
logger.info("π‘ First call: 300s (model loading), subsequent calls: 120s (inference only)")
|
| 498 |
-
else:
|
| 499 |
-
logger.info("π» Running in local mode - models will be loaded on first call")
|
| 500 |
|
| 501 |
# Create EditxTab instance
|
| 502 |
editx_tab = EditxTab(args)
|
|
|
|
| 81 |
os.path.join(args_global.model_path, "Step-Audio-EditX"),
|
| 82 |
encoder,
|
| 83 |
model_source=model_source,
|
| 84 |
+
tts_model_id=args_global.tts_model_id,
|
| 85 |
+
quantization_config=args_global.quantization,
|
| 86 |
+
torch_dtype=torch_dtype,
|
| 87 |
+
device_map=args_global.device_map,
|
| 88 |
)
|
| 89 |
logger.info("β StepCommonAudioTTS loaded")
|
| 90 |
print("Models initialized inside GPU context.")
|
|
|
|
| 480 |
default=None,
|
| 481 |
help="TTS model ID for online loading (if different from model-path)"
|
| 482 |
)
|
| 483 |
+
parser.add_argument(
|
| 484 |
+
"--quantization",
|
| 485 |
+
type=str,
|
| 486 |
+
default=None,
|
| 487 |
+
choices=["int4", "int8"],
|
| 488 |
+
help="Enable quantization for the TTS model to reduce memory usage."
|
| 489 |
+
"Choices: int4 (online), int8 (online)."
|
| 490 |
+
"When quantization is enabled, data types are handled automatically by the quantization library."
|
| 491 |
+
)
|
| 492 |
+
parser.add_argument(
|
| 493 |
+
"--torch-dtype",
|
| 494 |
+
type=str,
|
| 495 |
+
default="bfloat16",
|
| 496 |
+
choices=["float16", "bfloat16", "float32"],
|
| 497 |
+
help="PyTorch data type for model operations. This setting only applies when quantization is disabled. "
|
| 498 |
+
"When quantization is enabled, data types are managed automatically."
|
| 499 |
+
)
|
| 500 |
+
parser.add_argument(
|
| 501 |
+
"--device-map",
|
| 502 |
+
type=str,
|
| 503 |
+
default="cuda",
|
| 504 |
+
help="Device mapping for model loading (default: cuda)"
|
| 505 |
+
)
|
| 506 |
|
| 507 |
args = parser.parse_args()
|
| 508 |
|
| 509 |
# Store args globally for model configuration
|
| 510 |
args_global = args
|
|
|
|
| 511 |
logger.info(f"Configuration loaded:")
|
| 512 |
+
|
| 513 |
+
# Map string arguments to actual types
|
| 514 |
+
source_mapping = {
|
| 515 |
+
"auto": ModelSource.AUTO,
|
| 516 |
+
"local": ModelSource.LOCAL,
|
| 517 |
+
"modelscope": ModelSource.MODELSCOPE,
|
| 518 |
+
"huggingface": ModelSource.HUGGINGFACE
|
| 519 |
+
}
|
| 520 |
+
model_source = source_mapping[args.model_source]
|
| 521 |
+
|
| 522 |
+
# Map torch dtype string to actual torch dtype
|
| 523 |
+
dtype_mapping = {
|
| 524 |
+
"float16": torch.float16,
|
| 525 |
+
"bfloat16": torch.bfloat16,
|
| 526 |
+
"float32": torch.float32
|
| 527 |
+
}
|
| 528 |
+
torch_dtype = dtype_mapping[args.torch_dtype]
|
| 529 |
+
|
| 530 |
+
logger.info(f"Loading models with source: {args.model_source}")
|
| 531 |
logger.info(f"Model path: {args.model_path}")
|
| 532 |
logger.info(f"Tokenizer model ID: {args.tokenizer_model_id}")
|
| 533 |
+
logger.info(f"Torch dtype: {args.torch_dtype}")
|
| 534 |
+
logger.info(f"Device map: {args.device_map}")
|
| 535 |
if args.tts_model_id:
|
| 536 |
logger.info(f"TTS model ID: {args.tts_model_id}")
|
| 537 |
+
if args.quantization:
|
| 538 |
+
logger.info(f"π§ {args.quantization.upper()} quantization enabled")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 539 |
|
| 540 |
# Create EditxTab instance
|
| 541 |
editx_tab = EditxTab(args)
|
model_loader.py
CHANGED
|
@@ -1,17 +1,14 @@
|
|
| 1 |
"""
|
| 2 |
Unified model loading utility supporting ModelScope, HuggingFace and local path loading
|
| 3 |
"""
|
| 4 |
-
import importlib
|
| 5 |
import os
|
| 6 |
import logging
|
| 7 |
-
from pathlib import Path
|
| 8 |
-
import sys
|
| 9 |
import threading
|
| 10 |
-
from typing import
|
| 11 |
-
import
|
| 12 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 13 |
from funasr_detach import AutoModel
|
| 14 |
-
from transformers.models.auto import tokenization_auto, configuration_auto
|
| 15 |
|
| 16 |
# Global cache for downloaded models to avoid repeated downloads
|
| 17 |
# Key: (model_path, source)
|
|
@@ -104,19 +101,71 @@ class UnifiedModelLoader:
|
|
| 104 |
modelscope_patterns = []
|
| 105 |
return any(pattern in model_path for pattern in modelscope_patterns)
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
def load_transformers_model(
|
| 108 |
self,
|
| 109 |
model_path: str,
|
| 110 |
source: str = ModelSource.AUTO,
|
|
|
|
| 111 |
**kwargs
|
| 112 |
-
) ->
|
| 113 |
"""
|
| 114 |
Load Transformers model (for StepAudioTTS)
|
| 115 |
|
| 116 |
Args:
|
| 117 |
model_path: Model path or ID
|
| 118 |
source: Model source, auto means auto-detect
|
| 119 |
-
|
|
|
|
| 120 |
|
| 121 |
Returns:
|
| 122 |
(model, tokenizer) tuple
|
|
@@ -125,17 +174,47 @@ class UnifiedModelLoader:
|
|
| 125 |
source = self.detect_model_source(model_path)
|
| 126 |
|
| 127 |
self.logger.info(f"Loading Transformers model from {source}: {model_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
try:
|
| 130 |
if source == ModelSource.LOCAL:
|
| 131 |
# Local loading
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 140 |
model_path,
|
| 141 |
trust_remote_code=True,
|
|
@@ -148,13 +227,38 @@ class UnifiedModelLoader:
|
|
| 148 |
from modelscope import AutoTokenizer as MSAutoTokenizer
|
| 149 |
model_path = self._cached_snapshot_download(model_path, ModelSource.MODELSCOPE)
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
tokenizer = MSAutoTokenizer.from_pretrained(
|
| 159 |
model_path,
|
| 160 |
trust_remote_code=True,
|
|
@@ -165,13 +269,38 @@ class UnifiedModelLoader:
|
|
| 165 |
model_path = self._cached_snapshot_download(model_path, ModelSource.HUGGINGFACE)
|
| 166 |
|
| 167 |
# Load from HuggingFace
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 176 |
model_path,
|
| 177 |
trust_remote_code=True,
|
|
|
|
| 1 |
"""
|
| 2 |
Unified model loading utility supporting ModelScope, HuggingFace and local path loading
|
| 3 |
"""
|
|
|
|
| 4 |
import os
|
| 5 |
import logging
|
|
|
|
|
|
|
| 6 |
import threading
|
| 7 |
+
from typing import Optional, Dict, Any, Tuple
|
| 8 |
+
import torch
|
| 9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 10 |
+
from awq import AutoAWQForCausalLM
|
| 11 |
from funasr_detach import AutoModel
|
|
|
|
| 12 |
|
| 13 |
# Global cache for downloaded models to avoid repeated downloads
|
| 14 |
# Key: (model_path, source)
|
|
|
|
| 101 |
modelscope_patterns = []
|
| 102 |
return any(pattern in model_path for pattern in modelscope_patterns)
|
| 103 |
|
| 104 |
+
def _prepare_quantization_config(self, quantization_config: Optional[str], torch_dtype: Optional[torch.dtype] = None) -> Tuple[Dict[str, Any], bool]:
|
| 105 |
+
"""
|
| 106 |
+
Prepare quantization configuration for model loading
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
quantization_config: Quantization type ('int4', 'int8', 'int4_offline_awq', or None)
|
| 110 |
+
torch_dtype: PyTorch data type for compute operations
|
| 111 |
+
|
| 112 |
+
Returns:
|
| 113 |
+
Tuple of (quantization parameters dict, should_set_torch_dtype)
|
| 114 |
+
"""
|
| 115 |
+
if not quantization_config:
|
| 116 |
+
return {}, True
|
| 117 |
+
|
| 118 |
+
quantization_config = quantization_config.lower()
|
| 119 |
+
|
| 120 |
+
if quantization_config == "int4_offline_awq":
|
| 121 |
+
# For pre-quantized AWQ models, no additional quantization needed
|
| 122 |
+
self.logger.info("π§ Loading pre-quantized AWQ 4-bit model (offline)")
|
| 123 |
+
return {}, True # Load pre-quantized model normally, allow torch_dtype setting
|
| 124 |
+
|
| 125 |
+
elif quantization_config == "int8":
|
| 126 |
+
# Use user-specified torch_dtype for compute, default to bfloat16
|
| 127 |
+
compute_dtype = torch_dtype if torch_dtype is not None else torch.bfloat16
|
| 128 |
+
self.logger.info(f"π§ INT8 quantization: using {compute_dtype} for compute operations")
|
| 129 |
+
|
| 130 |
+
bnb_config = BitsAndBytesConfig(
|
| 131 |
+
load_in_8bit=True,
|
| 132 |
+
bnb_8bit_compute_dtype=compute_dtype,
|
| 133 |
+
)
|
| 134 |
+
return {
|
| 135 |
+
"quantization_config": bnb_config
|
| 136 |
+
}, False # INT8 quantization handles data types automatically, don't set torch_dtype
|
| 137 |
+
elif quantization_config == "int4":
|
| 138 |
+
# Use user-specified torch_dtype for compute, default to bfloat16
|
| 139 |
+
compute_dtype = torch_dtype if torch_dtype is not None else torch.bfloat16
|
| 140 |
+
self.logger.info(f"π§ INT4 quantization: using {compute_dtype} for compute operations")
|
| 141 |
+
|
| 142 |
+
bnb_config = BitsAndBytesConfig(
|
| 143 |
+
load_in_4bit=True,
|
| 144 |
+
bnb_4bit_quant_type="nf4",
|
| 145 |
+
bnb_4bit_compute_dtype=compute_dtype,
|
| 146 |
+
bnb_4bit_use_double_quant=True,
|
| 147 |
+
)
|
| 148 |
+
return {
|
| 149 |
+
"quantization_config": bnb_config
|
| 150 |
+
}, False # INT4 quantization handles torch_dtype internally, don't set it again
|
| 151 |
+
else:
|
| 152 |
+
raise ValueError(f"Unsupported quantization config: {quantization_config}. Supported: 'int4', 'int8', 'int4_offline_awq'")
|
| 153 |
+
|
| 154 |
def load_transformers_model(
|
| 155 |
self,
|
| 156 |
model_path: str,
|
| 157 |
source: str = ModelSource.AUTO,
|
| 158 |
+
quantization_config: Optional[str] = None,
|
| 159 |
**kwargs
|
| 160 |
+
) -> Tuple:
|
| 161 |
"""
|
| 162 |
Load Transformers model (for StepAudioTTS)
|
| 163 |
|
| 164 |
Args:
|
| 165 |
model_path: Model path or ID
|
| 166 |
source: Model source, auto means auto-detect
|
| 167 |
+
quantization_config: Quantization configuration ('int4', 'int8', 'int4_offline_awq', or None for no quantization)
|
| 168 |
+
**kwargs: Other parameters (torch_dtype, device_map, etc.)
|
| 169 |
|
| 170 |
Returns:
|
| 171 |
(model, tokenizer) tuple
|
|
|
|
| 174 |
source = self.detect_model_source(model_path)
|
| 175 |
|
| 176 |
self.logger.info(f"Loading Transformers model from {source}: {model_path}")
|
| 177 |
+
if quantization_config:
|
| 178 |
+
self.logger.info(f"π§ {quantization_config.upper()} quantization enabled")
|
| 179 |
+
|
| 180 |
+
# Prepare quantization configuration
|
| 181 |
+
quantization_kwargs, should_set_torch_dtype = self._prepare_quantization_config(quantization_config, kwargs.get("torch_dtype"))
|
| 182 |
|
| 183 |
try:
|
| 184 |
if source == ModelSource.LOCAL:
|
| 185 |
# Local loading
|
| 186 |
+
load_kwargs = {
|
| 187 |
+
"device_map": kwargs.get("device_map", "auto"),
|
| 188 |
+
"trust_remote_code": True,
|
| 189 |
+
"local_files_only": True
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
# Add quantization configuration if specified
|
| 193 |
+
load_kwargs.update(quantization_kwargs)
|
| 194 |
+
|
| 195 |
+
# Add torch_dtype based on quantization requirements
|
| 196 |
+
if should_set_torch_dtype and kwargs.get("torch_dtype") is not None:
|
| 197 |
+
load_kwargs["torch_dtype"] = kwargs.get("torch_dtype")
|
| 198 |
+
|
| 199 |
+
# Check if using AWQ quantization
|
| 200 |
+
if quantization_config and quantization_config.lower() == "int4_offline_awq":
|
| 201 |
+
# Use AWQ loading for pre-quantized AWQ models
|
| 202 |
+
awq_model_path = os.path.join(model_path, "awq_quantized")
|
| 203 |
+
if not os.path.exists(awq_model_path):
|
| 204 |
+
raise FileNotFoundError(f"AWQ quantized model not found at {awq_model_path}. Please run quantize_model_offline.py first.")
|
| 205 |
+
|
| 206 |
+
self.logger.info(f"π§ Loading AWQ quantized model from: {awq_model_path}")
|
| 207 |
+
model = AutoAWQForCausalLM.from_quantized(
|
| 208 |
+
awq_model_path,
|
| 209 |
+
device_map=kwargs.get("device_map", "auto"),
|
| 210 |
+
trust_remote_code=True
|
| 211 |
+
)
|
| 212 |
+
else:
|
| 213 |
+
# Standard loading
|
| 214 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 215 |
+
model_path,
|
| 216 |
+
**load_kwargs
|
| 217 |
+
)
|
| 218 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 219 |
model_path,
|
| 220 |
trust_remote_code=True,
|
|
|
|
| 227 |
from modelscope import AutoTokenizer as MSAutoTokenizer
|
| 228 |
model_path = self._cached_snapshot_download(model_path, ModelSource.MODELSCOPE)
|
| 229 |
|
| 230 |
+
load_kwargs = {
|
| 231 |
+
"device_map": kwargs.get("device_map", "auto"),
|
| 232 |
+
"trust_remote_code": True,
|
| 233 |
+
"local_files_only": True
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
# Add quantization configuration if specified
|
| 237 |
+
load_kwargs.update(quantization_kwargs)
|
| 238 |
+
|
| 239 |
+
# Add torch_dtype based on quantization requirements
|
| 240 |
+
if should_set_torch_dtype and kwargs.get("torch_dtype") is not None:
|
| 241 |
+
load_kwargs["torch_dtype"] = kwargs.get("torch_dtype")
|
| 242 |
+
|
| 243 |
+
# Check if using AWQ quantization
|
| 244 |
+
if quantization_config and quantization_config.lower() == "int4_offline_awq":
|
| 245 |
+
# Use AWQ loading for pre-quantized AWQ models
|
| 246 |
+
awq_model_path = os.path.join(model_path, "awq_quantized")
|
| 247 |
+
if not os.path.exists(awq_model_path):
|
| 248 |
+
raise FileNotFoundError(f"AWQ quantized model not found at {awq_model_path}. Please run quantize_model_offline.py first.")
|
| 249 |
+
|
| 250 |
+
self.logger.info(f"π§ Loading AWQ quantized model from: {awq_model_path}")
|
| 251 |
+
model = AutoAWQForCausalLM.from_quantized(
|
| 252 |
+
awq_model_path,
|
| 253 |
+
device_map=kwargs.get("device_map", "auto"),
|
| 254 |
+
trust_remote_code=True
|
| 255 |
+
)
|
| 256 |
+
else:
|
| 257 |
+
# Standard loading
|
| 258 |
+
model = MSAutoModelForCausalLM.from_pretrained(
|
| 259 |
+
model_path,
|
| 260 |
+
**load_kwargs
|
| 261 |
+
)
|
| 262 |
tokenizer = MSAutoTokenizer.from_pretrained(
|
| 263 |
model_path,
|
| 264 |
trust_remote_code=True,
|
|
|
|
| 269 |
model_path = self._cached_snapshot_download(model_path, ModelSource.HUGGINGFACE)
|
| 270 |
|
| 271 |
# Load from HuggingFace
|
| 272 |
+
load_kwargs = {
|
| 273 |
+
"device_map": kwargs.get("device_map", "auto"),
|
| 274 |
+
"trust_remote_code": True,
|
| 275 |
+
"local_files_only": True
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
# Add quantization configuration if specified
|
| 279 |
+
load_kwargs.update(quantization_kwargs)
|
| 280 |
+
|
| 281 |
+
# Add torch_dtype based on quantization requirements
|
| 282 |
+
if should_set_torch_dtype and kwargs.get("torch_dtype") is not None:
|
| 283 |
+
load_kwargs["torch_dtype"] = kwargs.get("torch_dtype")
|
| 284 |
+
|
| 285 |
+
# Check if using AWQ quantization
|
| 286 |
+
if quantization_config and quantization_config.lower() == "int4_offline_awq":
|
| 287 |
+
# Use AWQ loading for pre-quantized AWQ models
|
| 288 |
+
awq_model_path = os.path.join(model_path, "awq_quantized")
|
| 289 |
+
if not os.path.exists(awq_model_path):
|
| 290 |
+
raise FileNotFoundError(f"AWQ quantized model not found at {awq_model_path}. Please run quantize_model_offline.py first.")
|
| 291 |
+
|
| 292 |
+
self.logger.info(f"π§ Loading AWQ quantized model from: {awq_model_path}")
|
| 293 |
+
model = AutoAWQForCausalLM.from_quantized(
|
| 294 |
+
awq_model_path,
|
| 295 |
+
device_map=kwargs.get("device_map", "auto"),
|
| 296 |
+
trust_remote_code=True
|
| 297 |
+
)
|
| 298 |
+
else:
|
| 299 |
+
# Standard loading
|
| 300 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 301 |
+
model_path,
|
| 302 |
+
**load_kwargs
|
| 303 |
+
)
|
| 304 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 305 |
model_path,
|
| 306 |
trust_remote_code=True,
|
requirements.txt
CHANGED
|
@@ -22,3 +22,4 @@ gradio>=5.16.0
|
|
| 22 |
nvidia-cuda-nvrtc-cu12==12.8.93
|
| 23 |
spaces==0.42.1
|
| 24 |
matplotlib==3.10.7
|
|
|
|
|
|
| 22 |
nvidia-cuda-nvrtc-cu12==12.8.93
|
| 23 |
spaces==0.42.1
|
| 24 |
matplotlib==3.10.7
|
| 25 |
+
autoawq==0.2.8
|
tts.py
CHANGED
|
@@ -60,7 +60,10 @@ class StepAudioTTS:
|
|
| 60 |
model_path,
|
| 61 |
audio_tokenizer,
|
| 62 |
model_source=ModelSource.AUTO,
|
| 63 |
-
tts_model_id=None
|
|
|
|
|
|
|
|
|
|
| 64 |
):
|
| 65 |
"""
|
| 66 |
Initialize StepAudioTTS
|
|
@@ -70,6 +73,9 @@ class StepAudioTTS:
|
|
| 70 |
audio_tokenizer: Audio tokenizer for wav2token processing
|
| 71 |
model_source: Model source (auto/local/modelscope/huggingface)
|
| 72 |
tts_model_id: TTS model ID, if None use model_path
|
|
|
|
|
|
|
|
|
|
| 73 |
"""
|
| 74 |
# Determine model ID or path to load
|
| 75 |
if tts_model_id is None:
|
|
@@ -87,8 +93,9 @@ class StepAudioTTS:
|
|
| 87 |
self.llm, self.tokenizer, model_path = model_loader.load_transformers_model(
|
| 88 |
tts_model_id,
|
| 89 |
source=model_source,
|
| 90 |
-
|
| 91 |
-
|
|
|
|
| 92 |
)
|
| 93 |
logger.info(f"β
Successfully loaded LLM and tokenizer: {tts_model_id}")
|
| 94 |
except Exception as e:
|
|
@@ -100,6 +107,9 @@ class StepAudioTTS:
|
|
| 100 |
os.path.join(model_path, "CosyVoice-300M-25Hz")
|
| 101 |
)
|
| 102 |
|
|
|
|
|
|
|
|
|
|
| 103 |
# Use system prompts from config module
|
| 104 |
self.edit_clone_sys_prompt_tpl = AUDIO_EDIT_CLONE_SYSTEM_PROMPT_TPL
|
| 105 |
self.edit_sys_prompt = AUDIO_EDIT_SYSTEM_PROMPT
|
|
|
|
| 60 |
model_path,
|
| 61 |
audio_tokenizer,
|
| 62 |
model_source=ModelSource.AUTO,
|
| 63 |
+
tts_model_id=None,
|
| 64 |
+
quantization_config=None,
|
| 65 |
+
torch_dtype=torch.bfloat16,
|
| 66 |
+
device_map="cuda"
|
| 67 |
):
|
| 68 |
"""
|
| 69 |
Initialize StepAudioTTS
|
|
|
|
| 73 |
audio_tokenizer: Audio tokenizer for wav2token processing
|
| 74 |
model_source: Model source (auto/local/modelscope/huggingface)
|
| 75 |
tts_model_id: TTS model ID, if None use model_path
|
| 76 |
+
quantization_config: Quantization configuration ('int4', 'int8', or None)
|
| 77 |
+
torch_dtype: PyTorch data type for model weights (default: torch.bfloat16)
|
| 78 |
+
device_map: Device mapping for model (default: "cuda")
|
| 79 |
"""
|
| 80 |
# Determine model ID or path to load
|
| 81 |
if tts_model_id is None:
|
|
|
|
| 93 |
self.llm, self.tokenizer, model_path = model_loader.load_transformers_model(
|
| 94 |
tts_model_id,
|
| 95 |
source=model_source,
|
| 96 |
+
quantization_config=quantization_config,
|
| 97 |
+
torch_dtype=torch_dtype,
|
| 98 |
+
device_map=device_map
|
| 99 |
)
|
| 100 |
logger.info(f"β
Successfully loaded LLM and tokenizer: {tts_model_id}")
|
| 101 |
except Exception as e:
|
|
|
|
| 107 |
os.path.join(model_path, "CosyVoice-300M-25Hz")
|
| 108 |
)
|
| 109 |
|
| 110 |
+
# Print final GPU memory usage after all models are loaded
|
| 111 |
+
logger.info("π€ CosyVoice model loaded successfully")
|
| 112 |
+
|
| 113 |
# Use system prompts from config module
|
| 114 |
self.edit_clone_sys_prompt_tpl = AUDIO_EDIT_CLONE_SYSTEM_PROMPT_TPL
|
| 115 |
self.edit_sys_prompt = AUDIO_EDIT_SYSTEM_PROMPT
|