Spaces:
Sleeping
Sleeping
Update TTSModel to load modules and model files from v0.19 directory
Browse files- deprecated copy.py +0 -435
- tts_model.py +3 -3
deprecated copy.py
DELETED
|
@@ -1,435 +0,0 @@
|
|
| 1 |
-
# import os
|
| 2 |
-
# import gradio as gr
|
| 3 |
-
# import time
|
| 4 |
-
# import math
|
| 5 |
-
# import logging
|
| 6 |
-
# import matplotlib.pyplot as plt
|
| 7 |
-
# import numpy as np
|
| 8 |
-
# # from lib.mock_tts import MockTTSModel
|
| 9 |
-
# from lib import format_audio_output
|
| 10 |
-
# from lib.ui_content import header_html, demo_text_info
|
| 11 |
-
# from lib.book_utils import get_available_books, get_book_info, get_chapter_text
|
| 12 |
-
# from lib.text_utils import count_tokens
|
| 13 |
-
# from tts_model import TTSModel
|
| 14 |
-
|
| 15 |
-
# # Set HF_HOME for faster restarts with cached models/voices
|
| 16 |
-
# os.environ["HF_HOME"] = "/data/.huggingface"
|
| 17 |
-
|
| 18 |
-
# # Create TTS model instance
|
| 19 |
-
# model = TTSModel()
|
| 20 |
-
|
| 21 |
-
# # Configure logging
|
| 22 |
-
# logging.basicConfig(level=logging.DEBUG)
|
| 23 |
-
# # Suppress matplotlib debug messages
|
| 24 |
-
# logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
| 25 |
-
# logger = logging.getLogger(__name__)
|
| 26 |
-
# logger.debug("Starting app initialization...")
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
# model = TTSModel()
|
| 30 |
-
|
| 31 |
-
# def initialize_model():
|
| 32 |
-
# """Initialize model and get voices"""
|
| 33 |
-
# if model.model is None:
|
| 34 |
-
# if not model.initialize():
|
| 35 |
-
# raise gr.Error("Failed to initialize model")
|
| 36 |
-
|
| 37 |
-
# voices = model.list_voices()
|
| 38 |
-
# if not voices:
|
| 39 |
-
# raise gr.Error("No voices found. Please check the voices directory.")
|
| 40 |
-
|
| 41 |
-
# default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None
|
| 42 |
-
|
| 43 |
-
# return gr.update(choices=voices, value=default_voice)
|
| 44 |
-
|
| 45 |
-
# def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress):
|
| 46 |
-
# # Calculate time metrics
|
| 47 |
-
# elapsed = time.time() - start_time
|
| 48 |
-
# gpu_time_left = max(0, gpu_timeout - elapsed)
|
| 49 |
-
|
| 50 |
-
# # Calculate chunk time more accurately
|
| 51 |
-
# prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0
|
| 52 |
-
# chunk_time = elapsed - prev_total_time
|
| 53 |
-
|
| 54 |
-
# # Validate metrics before adding to state
|
| 55 |
-
# if chunk_time > 0 and tokens_per_sec >= 0:
|
| 56 |
-
# # Update progress state with validated metrics
|
| 57 |
-
# progress_state["progress"] = chunk_num / total_chunks
|
| 58 |
-
# progress_state["total_chunks"] = total_chunks
|
| 59 |
-
# progress_state["gpu_time_left"] = gpu_time_left
|
| 60 |
-
# progress_state["tokens_per_sec"].append(float(tokens_per_sec))
|
| 61 |
-
# progress_state["rtf"].append(float(rtf))
|
| 62 |
-
# progress_state["chunk_times"].append(chunk_time)
|
| 63 |
-
|
| 64 |
-
# # Only update progress display during processing
|
| 65 |
-
# progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s")
|
| 66 |
-
|
| 67 |
-
# def generate_speech_from_ui(text, voice_names, speed, gpu_timeout, progress=gr.Progress(track_tqdm=False)):
|
| 68 |
-
# """Handle text-to-speech generation from the Gradio UI"""
|
| 69 |
-
# try:
|
| 70 |
-
# if not text or not voice_names:
|
| 71 |
-
# raise gr.Error("Please enter text and select at least one voice")
|
| 72 |
-
|
| 73 |
-
# start_time = time.time()
|
| 74 |
-
|
| 75 |
-
# # Create progress state with explicit type initialization
|
| 76 |
-
# progress_state = {
|
| 77 |
-
# "progress": 0.0,
|
| 78 |
-
# "tokens_per_sec": [], # Initialize as empty list
|
| 79 |
-
# "rtf": [], # Initialize as empty list
|
| 80 |
-
# "chunk_times": [], # Initialize as empty list
|
| 81 |
-
# "gpu_time_left": float(gpu_timeout), # Ensure float
|
| 82 |
-
# "total_chunks": 0
|
| 83 |
-
# }
|
| 84 |
-
|
| 85 |
-
# # Handle single or multiple voices
|
| 86 |
-
# if isinstance(voice_names, str):
|
| 87 |
-
# voice_names = [voice_names]
|
| 88 |
-
|
| 89 |
-
# # Generate speech with progress tracking using combined voice
|
| 90 |
-
# audio_array, duration, metrics = model.generate_speech(
|
| 91 |
-
# text,
|
| 92 |
-
# voice_names,
|
| 93 |
-
# speed,
|
| 94 |
-
# gpu_timeout=gpu_timeout,
|
| 95 |
-
# progress_callback=update_progress,
|
| 96 |
-
# progress_state=progress_state,
|
| 97 |
-
# progress=progress
|
| 98 |
-
# )
|
| 99 |
-
|
| 100 |
-
# # Format output for Gradio
|
| 101 |
-
# audio_output, duration_text = format_audio_output(audio_array)
|
| 102 |
-
|
| 103 |
-
# # Create plot and metrics text outside GPU context
|
| 104 |
-
# fig, metrics_text = create_performance_plot(metrics, voice_names)
|
| 105 |
-
|
| 106 |
-
# return (
|
| 107 |
-
# audio_output,
|
| 108 |
-
# fig,
|
| 109 |
-
# metrics_text
|
| 110 |
-
# )
|
| 111 |
-
# except Exception as e:
|
| 112 |
-
# raise gr.Error(f"Generation failed: {str(e)}")
|
| 113 |
-
|
| 114 |
-
# def create_performance_plot(metrics, voice_names):
|
| 115 |
-
# """Create performance plot and metrics text from generation metrics"""
|
| 116 |
-
# # Clean and process the data
|
| 117 |
-
# tokens_per_sec = np.array(metrics["tokens_per_sec"])
|
| 118 |
-
# rtf_values = np.array(metrics["rtf"])
|
| 119 |
-
|
| 120 |
-
# # Calculate statistics using cleaned data
|
| 121 |
-
# median_tps = float(np.median(tokens_per_sec))
|
| 122 |
-
# mean_tps = float(np.mean(tokens_per_sec))
|
| 123 |
-
# std_tps = float(np.std(tokens_per_sec))
|
| 124 |
-
|
| 125 |
-
# # Set y-axis limits based on data range
|
| 126 |
-
# y_min = max(0, np.min(tokens_per_sec) * 0.9)
|
| 127 |
-
# y_max = np.max(tokens_per_sec) * 1.1
|
| 128 |
-
|
| 129 |
-
# # Create plot
|
| 130 |
-
# fig, ax = plt.subplots(figsize=(10, 5))
|
| 131 |
-
# fig.patch.set_facecolor('black')
|
| 132 |
-
# ax.set_facecolor('black')
|
| 133 |
-
|
| 134 |
-
# # Plot data points
|
| 135 |
-
# chunk_nums = list(range(1, len(tokens_per_sec) + 1))
|
| 136 |
-
|
| 137 |
-
# # Plot data points
|
| 138 |
-
# ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6)
|
| 139 |
-
|
| 140 |
-
# # Set y-axis limits with padding
|
| 141 |
-
# padding = 0.1 * (y_max - y_min)
|
| 142 |
-
# ax.set_ylim(max(0, y_min - padding), y_max + padding)
|
| 143 |
-
|
| 144 |
-
# # Add median line
|
| 145 |
-
# ax.axhline(y=median_tps, color='#05d9e8', linestyle='--',
|
| 146 |
-
# label=f'Median: {median_tps:.1f} tokens/sec')
|
| 147 |
-
|
| 148 |
-
# # Style improvements
|
| 149 |
-
# ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white')
|
| 150 |
-
# ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white')
|
| 151 |
-
# ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white')
|
| 152 |
-
# ax.tick_params(axis='both', which='major', labelsize=20, colors='white')
|
| 153 |
-
# ax.spines['bottom'].set_color('white')
|
| 154 |
-
# ax.spines['top'].set_color('white')
|
| 155 |
-
# ax.spines['left'].set_color('white')
|
| 156 |
-
# ax.spines['right'].set_color('white')
|
| 157 |
-
# ax.grid(False)
|
| 158 |
-
# ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left',
|
| 159 |
-
# labelcolor='white')
|
| 160 |
-
|
| 161 |
-
# plt.tight_layout()
|
| 162 |
-
|
| 163 |
-
# # Calculate average RTF from individual chunk RTFs
|
| 164 |
-
# rtf = np.mean(rtf_values)
|
| 165 |
-
|
| 166 |
-
# # Prepare metrics text
|
| 167 |
-
# metrics_text = (
|
| 168 |
-
# f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" +
|
| 169 |
-
# f"Real-time Factor: {rtf:.3f}\n" +
|
| 170 |
-
# f"Real Time Speed: {int(1/rtf)}x\n" +
|
| 171 |
-
# f"Processing Time: {int(metrics['total_time'])}s\n" +
|
| 172 |
-
# f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" +
|
| 173 |
-
# f"Voices: {', '.join(voice_names)}"
|
| 174 |
-
# )
|
| 175 |
-
|
| 176 |
-
# return fig, metrics_text
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
# # Create Gradio interface
|
| 180 |
-
# with gr.Blocks(title="Kokoro TTS Demo", css="""
|
| 181 |
-
# .equal-height {
|
| 182 |
-
# min-height: 400px;
|
| 183 |
-
# display: flex;
|
| 184 |
-
# flex-direction: column;
|
| 185 |
-
# }
|
| 186 |
-
# .token-label {
|
| 187 |
-
# font-size: 1rem;
|
| 188 |
-
# margin-bottom: 0.3rem;
|
| 189 |
-
# text-align: center;
|
| 190 |
-
# padding: 0.2rem 0;
|
| 191 |
-
# }
|
| 192 |
-
# .token-count {
|
| 193 |
-
# color: #4169e1;
|
| 194 |
-
# }
|
| 195 |
-
# """) as demo:
|
| 196 |
-
# gr.HTML(header_html)
|
| 197 |
-
|
| 198 |
-
# with gr.Row():
|
| 199 |
-
# # Column 1: Text Input and Book Selection
|
| 200 |
-
# with gr.Column(elem_classes="equal-height"):
|
| 201 |
-
# # Book selection
|
| 202 |
-
# books = get_available_books()
|
| 203 |
-
# book_dropdown = gr.Dropdown(
|
| 204 |
-
# label="Select Book",
|
| 205 |
-
# choices=[book['label'] for book in books],
|
| 206 |
-
# value=books[0]['label'] if books else None,
|
| 207 |
-
# type="value",
|
| 208 |
-
# allow_custom_value=True
|
| 209 |
-
# )
|
| 210 |
-
|
| 211 |
-
# # Initialize chapters for first book
|
| 212 |
-
# initial_book = books[0]['value'] if books else None
|
| 213 |
-
# initial_chapters = []
|
| 214 |
-
# if initial_book:
|
| 215 |
-
# book_path = os.path.join("texts/processed", initial_book)
|
| 216 |
-
# _, chapters = get_book_info(book_path)
|
| 217 |
-
# initial_chapters = [ch['title'] for ch in chapters]
|
| 218 |
-
|
| 219 |
-
# # Chapter selection with initial chapters
|
| 220 |
-
# chapter_dropdown = gr.Dropdown(
|
| 221 |
-
# label="Select Chapter",
|
| 222 |
-
# choices=initial_chapters,
|
| 223 |
-
# value=initial_chapters[0] if initial_chapters else None,
|
| 224 |
-
# type="value",
|
| 225 |
-
# allow_custom_value=True
|
| 226 |
-
# )
|
| 227 |
-
# lab_tps = 175
|
| 228 |
-
# lab_rts = 50
|
| 229 |
-
# # Text input area with initial chapter text
|
| 230 |
-
# initial_text = ""
|
| 231 |
-
# if initial_chapters and initial_book:
|
| 232 |
-
# book_path = os.path.join("texts/processed", initial_book)
|
| 233 |
-
# _, chapters = get_book_info(book_path)
|
| 234 |
-
# if chapters:
|
| 235 |
-
# initial_text = get_chapter_text(book_path, chapters[0]['id'])
|
| 236 |
-
# tokens = count_tokens(initial_text)
|
| 237 |
-
# time_estimate = math.ceil(tokens / lab_tps)
|
| 238 |
-
# output_estimate = (time_estimate * lab_rts)//60
|
| 239 |
-
# initial_label = f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'
|
| 240 |
-
# else:
|
| 241 |
-
# initial_label = '<div class="token-label"></div>'
|
| 242 |
-
# else:
|
| 243 |
-
# initial_label = '<div class="token-label"></div>'
|
| 244 |
-
|
| 245 |
-
# def update_text_label(text):
|
| 246 |
-
# if not text:
|
| 247 |
-
# return '<div class="token-label"></div>'
|
| 248 |
-
# tokens = count_tokens(text)
|
| 249 |
-
# time_estimate = math.ceil(tokens / lab_tps)
|
| 250 |
-
# output_estimate = (time_estimate * lab_rts)//60
|
| 251 |
-
# return f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
# text_input = gr.TextArea(
|
| 255 |
-
# label=None,
|
| 256 |
-
# placeholder="Enter text here, select a chapter, or upload a .txt file",
|
| 257 |
-
# value=initial_text,
|
| 258 |
-
# lines=8,
|
| 259 |
-
# max_lines=14,
|
| 260 |
-
# show_label=False,
|
| 261 |
-
# show_copy_button=True # Add copy button for convenience
|
| 262 |
-
# )
|
| 263 |
-
|
| 264 |
-
# clear_btn = gr.Button("Clear Text", variant="secondary")
|
| 265 |
-
# label_html = gr.HTML(initial_label)
|
| 266 |
-
|
| 267 |
-
# def clear_text():
|
| 268 |
-
# return "", '<div class="token-label"></div>'
|
| 269 |
-
|
| 270 |
-
# clear_btn.click(
|
| 271 |
-
# fn=clear_text,
|
| 272 |
-
# outputs=[text_input, label_html]
|
| 273 |
-
# )
|
| 274 |
-
|
| 275 |
-
# # Update label whenever text changes
|
| 276 |
-
# text_input.change(
|
| 277 |
-
# fn=update_text_label,
|
| 278 |
-
# inputs=[text_input],
|
| 279 |
-
# outputs=[label_html],
|
| 280 |
-
# trigger_mode="always_last"
|
| 281 |
-
# )
|
| 282 |
-
|
| 283 |
-
# def update_chapters(book_name):
|
| 284 |
-
# if not book_name:
|
| 285 |
-
# return gr.update(choices=[], value=None), "", '<div class="token-label"></div>'
|
| 286 |
-
# # Find the corresponding book file
|
| 287 |
-
# book_file = next((book['value'] for book in books if book['label'] == book_name), None)
|
| 288 |
-
# if not book_file:
|
| 289 |
-
# return gr.update(choices=[], value=None), "", '<div class="token-label"></div>'
|
| 290 |
-
# book_path = os.path.join("texts/processed", book_file)
|
| 291 |
-
# book_title, chapters = get_book_info(book_path)
|
| 292 |
-
# # Create simple choices list of chapter titles
|
| 293 |
-
# chapter_choices = [ch['title'] for ch in chapters]
|
| 294 |
-
# # Set initial chapter text when book is selected
|
| 295 |
-
# initial_text = get_chapter_text(book_path, chapters[0]['id']) if chapters else ""
|
| 296 |
-
# if initial_text:
|
| 297 |
-
# tokens = count_tokens(initial_text)
|
| 298 |
-
# time_estimate = math.ceil(tokens / 150 / 10) * 10
|
| 299 |
-
# label = f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
|
| 300 |
-
# else:
|
| 301 |
-
# label = '<div class="token-label"></div>'
|
| 302 |
-
# return gr.update(choices=chapter_choices, value=chapter_choices[0] if chapter_choices else None), initial_text, label
|
| 303 |
-
|
| 304 |
-
# def load_chapter_text(book_name, chapter_title):
|
| 305 |
-
# if not book_name or not chapter_title:
|
| 306 |
-
# return "", '<div class="token-label"></div>'
|
| 307 |
-
# # Find the corresponding book file
|
| 308 |
-
# book_file = next((book['value'] for book in books if book['label'] == book_name), None)
|
| 309 |
-
# if not book_file:
|
| 310 |
-
# return "", '<div class="token-label"></div>'
|
| 311 |
-
# book_path = os.path.join("texts/processed", book_file)
|
| 312 |
-
# # Get all chapters and find the one matching the title
|
| 313 |
-
# _, chapters = get_book_info(book_path)
|
| 314 |
-
# for ch in chapters:
|
| 315 |
-
# if ch['title'] == chapter_title:
|
| 316 |
-
# text = get_chapter_text(book_path, ch['id'])
|
| 317 |
-
# tokens = count_tokens(text)
|
| 318 |
-
# time_estimate = math.ceil(tokens / 150 / 10) * 10
|
| 319 |
-
# return text, f'<div class="token-label"> <span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
|
| 320 |
-
# return "", '<div class="token-label"></div>'
|
| 321 |
-
|
| 322 |
-
# # Set up event handlers for book/chapter selection
|
| 323 |
-
# book_dropdown.change(
|
| 324 |
-
# fn=update_chapters,
|
| 325 |
-
# inputs=[book_dropdown],
|
| 326 |
-
# outputs=[chapter_dropdown, text_input, label_html]
|
| 327 |
-
# )
|
| 328 |
-
|
| 329 |
-
# chapter_dropdown.change(
|
| 330 |
-
# fn=load_chapter_text,
|
| 331 |
-
# inputs=[book_dropdown, chapter_dropdown],
|
| 332 |
-
# outputs=[text_input, label_html]
|
| 333 |
-
# )
|
| 334 |
-
|
| 335 |
-
# # Column 2: Controls
|
| 336 |
-
# with gr.Column(elem_classes="equal-height"):
|
| 337 |
-
# file_input = gr.File(
|
| 338 |
-
# label="Upload .txt file",
|
| 339 |
-
# file_types=[".txt"],
|
| 340 |
-
# type="binary"
|
| 341 |
-
# )
|
| 342 |
-
|
| 343 |
-
# def load_text_from_file(file_bytes):
|
| 344 |
-
# if file_bytes is None:
|
| 345 |
-
# return None, '<div class="token-label"></div>'
|
| 346 |
-
# try:
|
| 347 |
-
# text = file_bytes.decode('utf-8')
|
| 348 |
-
# tokens = count_tokens(text)
|
| 349 |
-
# time_estimate = math.ceil(tokens / 150 / 10) * 10 # Round up to nearest 10 seconds
|
| 350 |
-
# return text, f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
|
| 351 |
-
# except Exception as e:
|
| 352 |
-
# raise gr.Error(f"Failed to read file: {str(e)}")
|
| 353 |
-
|
| 354 |
-
# file_input.change(
|
| 355 |
-
# fn=load_text_from_file,
|
| 356 |
-
# inputs=[file_input],
|
| 357 |
-
# outputs=[text_input, label_html]
|
| 358 |
-
# )
|
| 359 |
-
|
| 360 |
-
# with gr.Group():
|
| 361 |
-
# voice_dropdown = gr.Dropdown(
|
| 362 |
-
# label="Voice(s)",
|
| 363 |
-
# choices=[], # Start empty, will be populated after initialization
|
| 364 |
-
# value=None,
|
| 365 |
-
# allow_custom_value=True,
|
| 366 |
-
# multiselect=True
|
| 367 |
-
# )
|
| 368 |
-
|
| 369 |
-
# # Add refresh button to manually update voice list
|
| 370 |
-
# refresh_btn = gr.Button("🔄 Refresh Voices", size="sm")
|
| 371 |
-
|
| 372 |
-
# speed_slider = gr.Slider(
|
| 373 |
-
# label="Speed",
|
| 374 |
-
# minimum=0.5,
|
| 375 |
-
# maximum=2.0,
|
| 376 |
-
# value=1.0,
|
| 377 |
-
# step=0.1
|
| 378 |
-
# )
|
| 379 |
-
# gpu_timeout_slider = gr.Slider(
|
| 380 |
-
# label="GPU Timeout (seconds)",
|
| 381 |
-
# minimum=15,
|
| 382 |
-
# maximum=120,
|
| 383 |
-
# value=90,
|
| 384 |
-
# step=1,
|
| 385 |
-
# info="Maximum time allowed for GPU processing"
|
| 386 |
-
# )
|
| 387 |
-
# submit_btn = gr.Button("Generate Speech", variant="primary")
|
| 388 |
-
|
| 389 |
-
# # Column 3: Output
|
| 390 |
-
# with gr.Column(elem_classes="equal-height"):
|
| 391 |
-
# audio_output = gr.Audio(
|
| 392 |
-
# label="Generated Speech",
|
| 393 |
-
# type="numpy",
|
| 394 |
-
# format="wav",
|
| 395 |
-
# autoplay=False
|
| 396 |
-
# )
|
| 397 |
-
# progress_bar = gr.Progress(track_tqdm=False)
|
| 398 |
-
# metrics_text = gr.Textbox(
|
| 399 |
-
# label="Performance Summary",
|
| 400 |
-
# interactive=False,
|
| 401 |
-
# lines=5
|
| 402 |
-
# )
|
| 403 |
-
# metrics_plot = gr.Plot(
|
| 404 |
-
# label="Processing Metrics",
|
| 405 |
-
# show_label=True,
|
| 406 |
-
# format="png" # Explicitly set format to PNG which is supported by matplotlib
|
| 407 |
-
# )
|
| 408 |
-
|
| 409 |
-
# # Set up event handlers
|
| 410 |
-
# refresh_btn.click(
|
| 411 |
-
# fn=initialize_model,
|
| 412 |
-
# outputs=[voice_dropdown]
|
| 413 |
-
# )
|
| 414 |
-
|
| 415 |
-
# submit_btn.click(
|
| 416 |
-
# fn=generate_speech_from_ui,
|
| 417 |
-
# inputs=[text_input, voice_dropdown, speed_slider, gpu_timeout_slider],
|
| 418 |
-
# outputs=[audio_output, metrics_plot, metrics_text],
|
| 419 |
-
# show_progress=True
|
| 420 |
-
# )
|
| 421 |
-
|
| 422 |
-
# # Add text analysis info
|
| 423 |
-
# with gr.Row():
|
| 424 |
-
# with gr.Column():
|
| 425 |
-
# gr.Markdown(demo_text_info)
|
| 426 |
-
|
| 427 |
-
# # Initialize voices on load
|
| 428 |
-
# demo.load(
|
| 429 |
-
# fn=initialize_model,
|
| 430 |
-
# outputs=[voice_dropdown]
|
| 431 |
-
# )
|
| 432 |
-
|
| 433 |
-
# # Launch the app
|
| 434 |
-
# if __name__ == "__main__":
|
| 435 |
-
# demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tts_model.py
CHANGED
|
@@ -28,9 +28,9 @@ class TTSModel:
|
|
| 28 |
ensure_dir(self.voices_dir)
|
| 29 |
self.model_path = None
|
| 30 |
|
| 31 |
-
# Load required modules
|
| 32 |
py_modules = ["istftnet", "plbert", "models", "kokoro"]
|
| 33 |
-
module_files = download_model_files(self.model_repo, [f"{m}.py" for m in py_modules])
|
| 34 |
|
| 35 |
for module_name, file_path in zip(py_modules, module_files):
|
| 36 |
load_module_from_file(module_name, file_path)
|
|
@@ -48,7 +48,7 @@ class TTSModel:
|
|
| 48 |
# Download model files
|
| 49 |
model_files = download_model_files(
|
| 50 |
self.model_repo,
|
| 51 |
-
["kokoro-v0_19.pth", "config.json"]
|
| 52 |
)
|
| 53 |
self.model_path = model_files[0] # kokoro-v0_19.pth
|
| 54 |
|
|
|
|
| 28 |
ensure_dir(self.voices_dir)
|
| 29 |
self.model_path = None
|
| 30 |
|
| 31 |
+
# Load required modules from v0.19 directory
|
| 32 |
py_modules = ["istftnet", "plbert", "models", "kokoro"]
|
| 33 |
+
module_files = download_model_files(self.model_repo, [f"v0.19/{m}.py" for m in py_modules])
|
| 34 |
|
| 35 |
for module_name, file_path in zip(py_modules, module_files):
|
| 36 |
load_module_from_file(module_name, file_path)
|
|
|
|
| 48 |
# Download model files
|
| 49 |
model_files = download_model_files(
|
| 50 |
self.model_repo,
|
| 51 |
+
["v0.19/kokoro-v0_19.pth", "v0.19/config.json"]
|
| 52 |
)
|
| 53 |
self.model_path = model_files[0] # kokoro-v0_19.pth
|
| 54 |
|