File size: 17,606 Bytes
b5cb408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# app.py
from datetime import datetime, timedelta
from io import BytesIO
import base64, json
import random # <-- for random tip selection
from flask import Flask, request, jsonify, render_template
from sqlalchemy import text, func
from PIL import Image
import numpy as np
# Torch
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
from torchvision.models import EfficientNet_B0_Weights
# Miscellaneous imports from misc/
from misc.extensions import db, login_manager
from misc.models import User, ClassificationLog, normalize_label
from misc.auth import auth_bp, login_required, current_user # re-exported from auth
from misc.auth import auth_bp, api_logout as bp_api_logout
from misc.policy_engine import decide_action
# ---------------- App & Config ----------------
app = Flask(__name__)
app.config["SECRET_KEY"] = "change-me" # set via env var in prod
app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///recycloai.db"
app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False
db.init_app(app)
login_manager.init_app(app)
login_manager.login_view = "auth.login" # type: ignore[assignment]
# ---------------- SQLite schema repair ----------------
def _table_exists(conn, name: str) -> bool:
row = conn.execute(text(
"SELECT name FROM sqlite_master WHERE type='table' AND name=:n"
), {"n": name}).fetchone()
return row is not None
def _cols(conn, name: str) -> set[str]:
rows = conn.execute(text(f"PRAGMA table_info({name})")).fetchall()
return {r[1] for r in rows} # r[1] = column name
def ensure_sqlite_schema(app: Flask):
"""
Make the live recycloai.db compatible with our models without losing data.
- If a legacy 'user' table exists, rename to 'users' (if 'users' missing).
- Create missing tables.
- Add any missing columns on existing tables.
"""
with app.app_context():
with db.engine.begin() as conn:
# 1) Rename legacy table 'user' -> 'users' if needed
has_users = _table_exists(conn, "users")
has_user = _table_exists(conn, "user")
if has_user and not has_users:
conn.execute(text("ALTER TABLE user RENAME TO users"))
# 2) Create missing tables (no-op if they already exist)
db.create_all()
with db.engine.begin() as conn:
# 3) Add missing columns on 'users' (or legacy 'user' if both exist)
target_user_table = "users" if _table_exists(conn, "users") else ("user" if _table_exists(conn, "user") else None)
if target_user_table:
ucols = _cols(conn, target_user_table)
if "email" not in ucols:
conn.execute(text(f"ALTER TABLE {target_user_table} ADD COLUMN email TEXT"))
if "name" not in ucols:
conn.execute(text(f"ALTER TABLE {target_user_table} ADD COLUMN name TEXT"))
if "password_hash" not in ucols:
conn.execute(text(f"ALTER TABLE {target_user_table} ADD COLUMN password_hash TEXT"))
# 4) Ensure 'classification_logs' table exists and has all columns
if not _table_exists(conn, "classification_logs"):
# create_all should have created it; if not, force-create
conn.execute(text("""
CREATE TABLE IF NOT EXISTS classification_logs (
id INTEGER PRIMARY KEY,
user_id INTEGER,
label TEXT,
confidence REAL,
city TEXT,
created_at DATETIME
)
"""))
lcols = _cols(conn, "classification_logs")
if "user_id" not in lcols:
conn.execute(text("ALTER TABLE classification_logs ADD COLUMN user_id INTEGER"))
if "label" not in lcols:
conn.execute(text("ALTER TABLE classification_logs ADD COLUMN label TEXT"))
if "confidence" not in lcols:
conn.execute(text("ALTER TABLE classification_logs ADD COLUMN confidence REAL"))
if "city" not in lcols:
conn.execute(text("ALTER TABLE classification_logs ADD COLUMN city TEXT"))
if "created_at" not in lcols:
conn.execute(text("ALTER TABLE classification_logs ADD COLUMN created_at DATETIME"))
# ---------------- Model / Inference setup ----------------
STATE_PATH = "best_efficientnet_model.pth"
CLASS_NAMES_PATH = "artifacts/class_names.json"
NUM_CLASSES_FALLBACK = 6
THRESH = 0.75
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
_state = torch.load(STATE_PATH, map_location="cpu")
def _infer_num_classes(state_dict: dict) -> int | None:
for k, v in state_dict.items():
if k.endswith("classifier.1.weight") and hasattr(v, "shape"):
return int(v.shape[0])
for k, v in state_dict.items():
if k.endswith("classifier.1.bias") and hasattr(v, "shape"):
return int(v.shape[0])
return None
num_classes = _infer_num_classes(_state) or NUM_CLASSES_FALLBACK
_model = models.efficientnet_b0(weights=EfficientNet_B0_Weights.DEFAULT)
# grab in_features
def _in_features(classifier: nn.Module) -> int:
if isinstance(classifier, nn.Linear):
return int(classifier.in_features)
if isinstance(classifier, nn.Sequential):
for mod in reversed(classifier):
if isinstance(mod, nn.Linear):
return int(mod.in_features)
return 1280
in_features = _in_features(_model.classifier)
_model.classifier = nn.Sequential(nn.Dropout(0.2), nn.Linear(in_features, num_classes))
_missing, _unexpected = _model.load_state_dict(_state, strict=False)
_model.eval()
model = _model.to(device)
def _load_class_names(path: str) -> list[str]:
try:
with open(path, "r") as f:
classes = json.load(f)
if isinstance(classes, list) and all(isinstance(x, str) for x in classes):
return classes
except Exception:
pass
return ["Cardboard", "Glass", "Metal", "Paper", "Plastic", "Trash"]
CLASS_NAMES = _load_class_names(CLASS_NAMES_PATH)
def prepare_image(img: Image.Image) -> torch.Tensor:
img = img.convert('RGB').resize((224, 224))
arr = np.array(img).astype(np.float32) / 255.0
mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
arr = (arr - mean) / std
arr = np.transpose(arr, (2, 0, 1))
return torch.from_numpy(arr).unsqueeze(0).to(device)
# ---------------- Tips (3 per class/action) + random selection ----------------
TIPS = {
"Cardboard": [
"Most recycling bins accept clean cardboard — look for the blue or green bin with the recycling logo.",
"If you have too much, take flattened boxes to a local recycling drop-off center or grocery store collection point.",
"Wet or food-soiled cardboard (like greasy pizza boxes) usually goes in the trash or compost, depending on city rules."
],
"Glass": [
"Recycle bottles and jars in your household recycling bin if your city accepts glass — check your city’s website or A-Z waste guide.",
"If curbside glass recycling isn’t available, bring clean bottles and jars to a community recycling drop-off or bottle depot.",
"Broken glass should go in the trash (wrapped safely) — it’s not recyclable curbside in most places."
],
"Metal": [
"Empty and rinse cans — then put them in your curbside recycling bin if your area accepts metal.",
"If you have scrap metal (like wires or tools), take it to a local scrap yard or recycling center — many pay for metal.",
"Clean aluminum foil can go in recycling if your city allows it; otherwise, collect and drop it off with metals at a facility."
],
"Paper": [
"Most clean paper (like office paper, mail, newspapers) goes in your curbside recycling bin.",
"Check with your city if they accept shredded paper — some want it bagged, others ask for drop-off only.",
"Glossy, waxy, or dirty paper (like takeout boxes) often goes in the trash or compost instead."
],
"Plastic": [
"Look for a recycling symbol (♻️) with numbers 1–2 — these are accepted in most curbside programs.",
"If your plastic is soft or flexible (like bags or wraps), take it to store collection bins labeled ‘Plastic Film Recycling’.",
"When unsure, search your local recycling guide by item name (e.g., 'plastic cup') — it’ll tell you where to drop it off."
],
"Trash": [
"If it can’t go in your recycling or compost, it belongs in the trash bin.",
"Check your city’s disposal guide — some items (like batteries or electronics) need special drop-off locations.",
"When possible, look for reuse options — donation centers, repair shops, or creative reuse stores often accept items."
],
"Unsure": [
"Try another angle, better lighting, or remove background clutter.",
"Manually select a material or add attributes like ‘greasy/wet’.",
"Check your local recycling guide for specific items."
],
}
ACTION_TIPS = {
"Recyclable": [
"Rinse/empty items and keep them dry to avoid contamination.",
"Don’t bag recyclables—place them loose in the cart.",
"If a piece is smaller than a credit card, it may not get captured."
],
"Compost": [
"Remove plastic liners or stickers; only food-soiled fiber belongs.",
"Tear large pieces into smaller bits to speed up composting.",
"No plastics, glass, or metal in organics—even if ‘biodegradable’."
],
"Landfill": [
"If it’s not accepted locally, place it in trash—don’t wish-cycle.",
"Reduce and reuse where possible to cut landfill waste.",
"Bundle messy trash to prevent leaks and pests."
],
"Unsure": TIPS["Unsure"], # reuse same three
}
def _pick_from_list(items: list[str]) -> str:
"""Pick a tip based on a random number from 1 to 3 (index 0..2)."""
if not items:
return "Check local recycling guidelines for your area."
n = random.randint(1, 3) # user request: choose a random number from 1..3
# If the list has fewer than 3 items, wrap safely
idx = (n - 1) % len(items)
return items[idx]
def _tip_for(label: str | None, action: str | None) -> str:
"""
Case-insensitive material tip lookup with random choice among 3 tips.
Fallback to action-level tips, then to a generic default.
"""
# Try material tips (case-insensitive)
if label:
key = label.strip()
if key in TIPS:
return _pick_from_list(TIPS[key])
low = key.lower()
for k in TIPS.keys():
if k.lower() == low:
return _pick_from_list(TIPS[k])
# Fallback to action-level tips
if action and action in ACTION_TIPS:
return _pick_from_list(ACTION_TIPS[action])
return "Check local recycling guidelines for your area."
# ---------------- Blueprints ----------------
app.register_blueprint(auth_bp) # /login, /signup, /api/logout
# ---- add the alias RIGHT AFTER blueprint registration ----
@app.route("/api/logout", methods=["POST"], endpoint="api_logout")
def api_logout_alias():
return bp_api_logout()
@app.route("/dashboard")
@login_required
def dashboard():
return render_template("progress.html")
# ---------------- Pages ----------------
@app.route("/", endpoint="index")
def home():
return render_template("home.html") # or "index.html" if that's your file
# --- keep this public ---
@app.route("/charities")
def charities():
return render_template("charities.html")
@app.route("/progress")
@login_required
def progress():
return render_template("progress.html")
# ---------------- Health ----------------
@app.route("/health")
def health():
return jsonify({
"status": "ok",
"device": str(device),
"classes": CLASS_NAMES,
"missing_keys": len(_missing),
"unexpected_keys": len(_unexpected)
})
# ---------------- Inference ----------------
@app.route("/process_image", methods=["POST"])
def process_image():
data = request.get_json() or {}
img_data = data.get("image_data")
if not img_data:
return jsonify({"error": "No image data provided."}), 400
try:
_, encoded = img_data.split(",", 1)
except ValueError:
encoded = img_data
try:
img_bytes = base64.b64decode(encoded)
img = Image.open(BytesIO(img_bytes))
except Exception as e:
return jsonify({"error": f"Invalid image data: {e}"}), 400
x = prepare_image(img)
with torch.no_grad():
logits = model(x)
probs = F.softmax(logits, dim=1).cpu().numpy()[0]
pred_idx = int(np.argmax(probs))
confidence = float(probs[pred_idx])
label = CLASS_NAMES[pred_idx] if 0 <= pred_idx < len(CLASS_NAMES) else f"Class_{pred_idx}"
attrs = data.get("attrs") or {}
user_city = data.get("city") or "default"
# abstain
if confidence < 0.75:
action = "Unsure"
resp = {
"material": label,
"action": action,
"why": "Low confidence prediction. Try another angle or better light.",
"confidence": confidence,
"confidence_text": f"{confidence*100:.1f} % (low)",
"tip": _tip_for("Unsure", "Unsure"),
"abstained": True
}
try:
if current_user.is_authenticated:
db.session.add(ClassificationLog(
user_id=current_user.id,
label=normalize_label(action),
confidence=confidence,
city=user_city
))
db.session.commit()
except Exception:
db.session.rollback()
return jsonify(resp)
# policy decision
action, why = decide_action(label, attrs, user_city)
# log per-user
try:
if current_user.is_authenticated:
db.session.add(ClassificationLog(
user_id=current_user.id,
label=normalize_label(action),
confidence=confidence,
city=user_city
))
db.session.commit()
except Exception:
db.session.rollback()
return jsonify({
"material": label,
"action": action,
"why": why,
"confidence": confidence,
"confidence_text": f"{confidence*100:.1f} % Confidence Score",
"tip": _tip_for(label, action),
"abstained": False
})
# ---------------- Progress APIs ----------------
@app.route("/api/progress/summary", methods=["GET"])
@login_required
def api_progress_summary():
# overall totals
totals = {"Recyclable": 0, "Compost": 0, "Landfill": 0, "Unsure": 0, "Other": 0}
rows = (db.session.query(ClassificationLog.label, func.count())
.filter(ClassificationLog.user_id == current_user.id)
.group_by(ClassificationLog.label).all())
for label, cnt in rows:
totals[normalize_label(label)] = cnt
# last 14 days
today = datetime.utcnow().date()
since = today - timedelta(days=13)
since_dt = datetime.combine(since, datetime.min.time())
by_day = {(since + timedelta(days=i)).isoformat():
{"Recyclable":0,"Compost":0,"Landfill":0,"Unsure":0,"Other":0}
for i in range(14)}
per = (db.session.query(
text("date(created_at) as day"),
ClassificationLog.label,
func.count().label("cnt"))
.filter(ClassificationLog.user_id == current_user.id)
.filter(ClassificationLog.created_at >= since_dt)
.group_by(text("day"), ClassificationLog.label)
.all())
for day, label, cnt in per:
k = str(day)
if k in by_day:
by_day[k][normalize_label(label)] += cnt
total = sum(totals.values())
return jsonify({"ok": True, "total": total, "totals": totals, "per_day": by_day})
@app.route("/api/progress/logs", methods=["GET"])
@login_required
def api_progress_logs():
limit = min(int(request.args.get("limit", 200)), 1000)
logs = (ClassificationLog.query
.filter_by(user_id=current_user.id)
.order_by(ClassificationLog.created_at.desc())
.limit(limit).all())
return jsonify({
"ok": True,
"logs": [{
"id": l.id,
"ts": l.created_at.isoformat(),
"label": l.label,
"confidence": l.confidence,
"city": l.city
} for l in logs]
})
@app.route("/api/logs", methods=["DELETE"])
@login_required
def api_clear_logs():
ClassificationLog.query.filter_by(user_id=current_user.id).delete()
db.session.commit()
return jsonify({"ok": True})
# ---------------- Main ----------------
if __name__ == "__main__":
ensure_sqlite_schema(app) # repair/align existing DB
app.run(debug=True)
|