Spaces:
Sleeping
Sleeping
| from langchain.chains import create_history_aware_retriever, create_retrieval_chain | |
| from langchain.chains.combine_documents import create_stuff_documents_chain | |
| from langchain_core.runnables import RunnableWithMessageHistory | |
| from .prompts import template_chat as chat_prompt | |
| from .prompts import template_summarize as summary_prompt | |
| from typing import Callable | |
| from langchain_core.vectorstores import VectorStoreRetriever | |
| from langchain_core.language_models.chat_models import BaseChatModel | |
| from logger import get_logger | |
| log = get_logger(name="chains_rag") | |
| def build_rag_chain( | |
| llm_chat: BaseChatModel, llm_summary: BaseChatModel, | |
| retriever: VectorStoreRetriever, get_history_fn: Callable): | |
| """Builds a Conversational RAG (Retrieval-Augmented Generation) chain. | |
| Args: | |
| llm_chat (BaseChatModel): The LLM model for generating chat responses. | |
| llm_summary (BaseChatModel): The LLM model for summarizing chat history. | |
| retriever (VectorStoreRetriever): The retriever to fetch relevant documents. | |
| get_history_fn (Callable): Function to retrieve chat history for a session. | |
| Returns: | |
| RunnableWithMessageHistory: A runnable chain that processes user input and chat history | |
| to provide a final answer based on retrieved documents and chat context. | |
| """ | |
| log.info("Building the Conversational RAG Chain...") | |
| # Chain to summarize the history and retrieve relevant documents | |
| # 3 User Input + Chat History > Summarizer Template > Standalone Que > Get Docs | |
| retriever_chain = create_history_aware_retriever(llm_summary, retriever, summary_prompt) | |
| log.info("Created the retriever chain with summarization.") | |
| # Chain to combine the retrieved documents and get the final answer | |
| # 4 Multiple Docs > Combine All > Chat Template > Final Output | |
| qa_chain = create_stuff_documents_chain(llm=llm_chat, prompt=chat_prompt) | |
| log.info("Created the QA chain with chat template.") | |
| # Main RAG Chain: | |
| # 2 Input + Chat History > [ `Summarizer Template` > `Get Docs` ] > [ `Combine` > `Chat Template` ] > Output | |
| rag_chain = create_retrieval_chain(retriever_chain, qa_chain) | |
| log.info("Created the main RAG chain.") | |
| log.info("Returning the final Conversational RAG Chain w history.") | |
| # 1 Final Conversational RAG Chain: | |
| return RunnableWithMessageHistory( | |
| runnable=rag_chain, | |
| get_session_history=get_history_fn, | |
| input_messages_key="input", | |
| history_messages_key="chat_history", | |
| output_messages_key="answer", | |
| ) | |