chat-with-your-data / requirements.txt
sanchitshaleen
Initial deployment of RAG with Gemma-3 to Hugging Face Spaces
4aec76b
# Backend Req: Common in all environments:
ipykernel==6.29.5
langchain==0.3.25
langchain-community==0.3.24
langchain-core==0.3.60
langchain-text-splitters==0.3.8
PyMuPDF==1.25.5
unstructured==0.17.2
Markdown==3.8
langchain-qdrant==0.2.0
qdrant-client==1.12.1
fastapi==0.115.12
uvicorn==0.34.2
python-multipart==0.0.20
pytz==2025.2
bcrypt==4.3.0
python-dotenv==1.0.1
psycopg2-binary==2.9.10
SQLAlchemy==2.0.36
deepeval>=0.21.0
docling>=1.0.0
Pillow>=10.0.0
pytesseract>=0.3.10
torch>=2.0.0
torchvision>=0.15.0
transformers>=4.36.0
# ColPali for vision-based document retrieval:
colpali-engine>=0.1.0
opencv-python>=4.8.0
# Frontend Req: If you want to serve streamlit app:
pytz==2025.2
streamlit==1.45.1
# Backend Req: One of these two as per your convenience:
# I have used ollama for 'dev' and google-genai for 'deploy'
langchain-ollama==0.3.3
langchain-google-genai==2.1
# Others:
# python:
# => "3.12.0"
# => "3.12.*" in general
# ollama embeddings
# => "mxbai-embeddings-large" (tested and used)
# => "nomic-embed-text" (if low on GPU memory / CPU inferencing)
# ollama llm models
# => "gemma3:latest" or "gemma3:4b" (both are same)(tested, used)
# => "gemma3:1b" (if you're low on GPU memory / CPU inferencing)
# Redis client for optional Redis-backed history
redis>=4.6.0