Commit
·
250f34d
1
Parent(s):
ca8b057
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import numpy as np
|
| 4 |
+
import keras
|
| 5 |
+
|
| 6 |
+
# Load pre-trained model
|
| 7 |
+
model = keras.models.load_model('./image_classification_model.keras')
|
| 8 |
+
image_size = (180, 180)
|
| 9 |
+
|
| 10 |
+
# Function to make prediction
|
| 11 |
+
def predict(image):
|
| 12 |
+
image_size = (180, 180)
|
| 13 |
+
img = keras.utils.load_img(image, target_size=image_size)
|
| 14 |
+
|
| 15 |
+
img_array = keras.utils.img_to_array(img)
|
| 16 |
+
img_array = np.expand_dims(img_array, 0) # Create batch axis
|
| 17 |
+
|
| 18 |
+
predictions = model.predict(img_array)
|
| 19 |
+
score = float(keras.activations.sigmoid(predictions[0][0]))
|
| 20 |
+
return score
|
| 21 |
+
|
| 22 |
+
# Streamlit app
|
| 23 |
+
def main():
|
| 24 |
+
st.title("Image Classification from Scratch")
|
| 25 |
+
st.write("Upload an image to predict whether the image contains a cat or a dog.")
|
| 26 |
+
|
| 27 |
+
uploaded_image = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
|
| 28 |
+
|
| 29 |
+
if uploaded_image is not None:
|
| 30 |
+
image = Image.open(uploaded_image)
|
| 31 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
| 32 |
+
|
| 33 |
+
if st.button('Predict'):
|
| 34 |
+
score = predict(uploaded_image)
|
| 35 |
+
if (1 - score) > score:
|
| 36 |
+
st.write('Prediction Result: {:.2f}% Cat'.format(100 * (1 - score)))
|
| 37 |
+
else:
|
| 38 |
+
st.write('Prediction Result: {:.2f}% Dog'.format(100 * score))
|
| 39 |
+
|
| 40 |
+
if __name__ == '__main__':
|
| 41 |
+
main()
|