Spaces:
Runtime error
Runtime error
File size: 1,539 Bytes
b3b6acd 11a8b4d b3b6acd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import transformers
from transformers import AutoConfig, AutoTokenizer, AutoModelForSequenceClassification
import torch
import gradio as gr
model_dir = "./experiments/checkpoint-382"
config = AutoConfig.from_pretrained(model_dir, num_labels=3, finetuning_task="text-classification")
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSequenceClassification.from_pretrained(model_dir, config=config)
def inference(input_text):
inputs = tokenizer.batch_encode_plus([input_text], return_tensors="pt", max_length=512, truncation=True, padding="max_length")
with torch.no_grad():
logits = model(**inputs)["logits"]
predicted_class = torch.argmax(logits, dim=1).item()
output = model.config.id2label[predicted_class]
return output
with gr.Blocks(css=""".message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 1.5em; padding: 1em; text-align: center;} #component-21 > div.wrap.svelte-w6rprc {height: 600px;}""") as demo:
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", scale=2, container=False)
answer = gr.Output(label="Output", lines=0)
generate_btn = gr.Button(text="Generate", type="primary", scale=2)
inputs = [input_text]
outputs = [answer]
generate_btn.click(fn=inference, inputs=inputs, outputs=outputs, show_progress=True)
examples = [
["I love this movie!"],
["I hate this movie!"],
["I feel neutral about this movie!"]
]
demo.queue()
demo.launch() |