rajoria007 commited on
Commit
2ae0890
·
verified ·
1 Parent(s): 64080ad

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. Dockerfile +19 -0
  2. app.py +58 -0
  3. best_random_forest_model_v1.0.joblib +3 -0
  4. requirements.txt +11 -0
Dockerfile ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9-slim
2
+
3
+ # Set the working directory inside the container
4
+ WORKDIR /app
5
+
6
+ # Copy all files from the current directory to the container's working directory
7
+ COPY . .
8
+
9
+ # Install dependencies from the requirements file without using cache to reduce image size
10
+ RUN pip install --no-cache-dir --upgrade -r requirements.txt
11
+
12
+ # Expose the port the Flask app will run on
13
+ #EXPOSE 7860
14
+
15
+ # Define the command to start the application using Gunicorn with 4 worker processes
16
+ # - `-w 4`: Uses 4 worker processes for handling requests
17
+ # - `-b 0.0.0.0:7860`: Binds the server to port 7860 on all network interfaces
18
+ # - `app:sales_predictor_api`: Specifies the application entry point (app.py with Flask instance named sales_predictor_api)
19
+ CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:7860", "app:sales_predictor_api"]
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ import numpy as np
3
+ import joblib # For loading the serialized model
4
+ import pandas as pd # For data manipulation
5
+ from flask import Flask, request, jsonify # For creating the Flask API
6
+ import os
7
+
8
+ # Initialize the Flask application
9
+ sales_predictor_api = Flask("Superkart Sales Predictor")
10
+
11
+ # Load the trained machine learning model
12
+ model_filename = joblib.load("best_random_forest_model_v1.0.joblib")
13
+
14
+ # Define a route for the home page (GET request)
15
+ @sales_predictor_api.get('/')
16
+ def home():
17
+ """
18
+ This function handles GET requests to the root URL ('/') of the API.
19
+ It returns a simple welcome message.
20
+ """
21
+ return "Welcome to the SuperKart Sales Prediction API!"
22
+
23
+ # Define an endpoint for single property prediction (POST request)
24
+ @sales_predictor_api.post('/v1/sales')
25
+ def predict_rental_price():
26
+ """
27
+ This function handles POST requests to the '/v1/sales' endpoint.
28
+ It expects a JSON payload containing property details and returns
29
+ the predicted rental price as a JSON response.
30
+ """
31
+ # Get the JSON data from the request body
32
+ sales_data = request.get_json()
33
+
34
+ # Extract relevant features from the JSON data
35
+ sample = {
36
+ 'Product_Weight': sales_data['Product_Weight']
37
+ }
38
+
39
+ # Convert the extracted data into a Pandas DataFrame
40
+ input_data = pd.DataFrame([sample])
41
+
42
+ # Make prediction (get log_price)
43
+ predicted_log_sales = model_filename.predict(input_data)[0]
44
+
45
+ # Calculate actual price
46
+ predicted_sales = np.exp(predicted_log_sales)
47
+
48
+ # Convert predicted_price to Python float
49
+ predicted_sales = round(float(predicted_sales), 2)
50
+ # The conversion above is needed as we convert the model prediction (log price) to actual price using np.exp, which returns predictions as NumPy float32 values.
51
+ # When we send this value directly within a JSON response, Flask's jsonify function encounters a datatype error
52
+
53
+ # Return the actual price
54
+ return jsonify({'predicted_sales': predicted_sales})
55
+
56
+ # Run the Flask application in debug mode if this script is executed directly
57
+ if __name__ == '__main__':
58
+ sales_predictor_api.run()
best_random_forest_model_v1.0.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6ee8c6fca4440cad1bb44cc11a7e057a1f8c571ccd18927e1c0e3e06a27d79e
3
+ size 24974954
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pandas==2.2.2
2
+ numpy==2.0.2
3
+ scikit-learn==1.6.1
4
+ xgboost==2.1.4
5
+ joblib==1.4.2
6
+ Werkzeug==2.2.2
7
+ flask==2.2.2
8
+ gunicorn==20.1.0
9
+ requests==2.28.1
10
+ uvicorn[standard]
11
+ streamlit==1.43.2